Исследование функций и построение графиков с помощью производной.

Презентация:



Advertisements
Похожие презентации
Урок на тему : «Исследование функции с помощью производной» с использованием компьютерных технологий Учитель математики Бахтиярова Г.Ф.
Advertisements

Исследование функций и построение графиков с помощью производной.
МОУСОШ 50 Урок на тему : «Исследование функции с помощью производной» с использованием компьютерных технологий Учитель математики Морохова Лариса Александровна.
Выполнил студент группы 1 ис 11-3 Лутфуллин Руслан.
Тема урока: применение производной к исследованию функции Цели учебного занятия: Сегодня нам с вами нужно повторить опорные понятия, определения и теоремы.
Применения производной к исследованию функций Применения производной к исследованию функций.
С а м о с т о я т е л ь н а я р а б о т а 1.Найдите промежутки возрастания и убывания функции. а) а) б) б) 2. Исследуйте функцию у=f(x) на максимум и минимум.
Повторение теории. 1) Какая функция называется возрастающей? 2) Какая функция называется убывающей? 3) Как связан знак производной с возрастанием и убыванием.
Критические точки функции Точки экстремумов Алгебра-10.
Приложение производной к исследованию функции. План I. Исследование функции на монотонность: 1. Определение монотонности 2. Необходимый и достаточный.
Применение производных Лекция 6. Содержание 1.Теоремы о дифференцируемых функциях. 2. Правило Лопиталя раскрытия неопределенностей. 3.Убывание и возрастание.
§9. Исследование функций и построение графиков 1. Возрастание и убывание функции ОПРЕДЕЛЕНИЕ. Функция y = f(x) называется возрастающей (неубывающей) на.
«Применение производной для исследования функции» Урок формирования новых знаний. Лабораторная работа-исследование.
Достаточный признак возрастания функции. Если f '( х )>0 в каждой точке интервала I, то функция f возрастает на этом интервале. Достаточный признак убывания.
Первая производная Вторая производная План. Первая производная Если производная функция положительна (отрицательна) в некотором интервале, то функция.
Опр. 13. Функция y = f( x ) называется Пример невозрастающей функции x 1 < x 2 < x 3 f(x 1 )= f(x 2 ) > f(x 3 ) x y y=f(x) § 17. Исследование поведения.
Амиргамзаев Ю.Г., учитель математики МКОУ «ЩаринскаяСОШ » с.Щара Лакский район РД.
Презентация к уроку по алгебре (10 класс) по теме: Презентация "Применение производной к исследованию и построению графика функции"
Урок-лекция «Применение производной к исследованию и построению графиков функций»
Чем дальше в лес, тем больше…. Цели проекта: Научиться применять производную к исследованию функции. Задачи проекта: Составление уравнения касательной.
Транксрипт:

Исследование функций и построение графиков с помощью производной

«…нет ни одной области в математике, которая когда-либо не окажется применимой к явлениям действительного мира…» Н.И. Лобачевский Скажи мне, и я забуду. Покажи мне, и я запомню. Дай мне действовать самому, И я научусь. Конфуций

Цели урока: Образовательные. Формировать: – –- навыки прикладного использования аппарата производной; – –- выявить уровень овладения учащимися комплексом знаний и умений по исследованию функции и ликвидировать пробелы в знаниях в соответствии с требованиями к математической подготовке учащихся. Развивающие. Развивать: – –- способности к самостоятельному планированию и организации работы – –- навыки коррекции собственной деятельности через применение информационных технологий; – –- умение обобщать, абстрагировать и конкретизировать знания при исследовании функции. Воспитательные. Воспитывать: – –- познавательный интерес к математике; – –- информационную культуру и культуру общения; – –- самостоятельность, способность к коллективной работе.

I этап. Необходимое условие возрастания и убывания функции Необходимое условие возрастания и убывания функции Необходимое условие возрастания и убывания функции Необходимое условие возрастания и убывания функции Достаточное условие возрастания и убывания функции Достаточное условие возрастания и убывания функции Достаточное условие возрастания и убывания функции Достаточное условие возрастания и убывания функции Необходимое условие экстремума. (теорема Ферма) Необходимое условие экстремума. (теорема Ферма) Необходимое условие экстремума. (теорема Ферма) Необходимое условие экстремума. (теорема Ферма) Признак максимума функции. Признак максимума функции. Признак максимума функции. Признак максимума функции. Признак минимума функции. Признак минимума функции. Признак минимума функции. Признак минимума функции. Достаточные условия выпуклости и вогнутости графика функции Достаточные условия выпуклости и вогнутости графика функции Достаточные условия выпуклости и вогнутости графика функции Достаточные условия выпуклости и вогнутости графика функции

Необходимое условие возрастания и убывания функции Т е о р е м а. Если дифференцируемая функция f(x), х (а;b), возрастает (убывает) на (а;b), то f `(x) 0 (f `(x) 0) для любого х из интервала (а;b).

Достаточные условия возрастания и убывания функции Теорема Лагранжа. Если функция f(x), х [а;b], непрерывна на отрезке [а;b] и дифференцируема на интервале (а;b), то найдётся точка с (а;b) такая, что имеет место формула f(a) – f(b) = f `(c)(b – a)

Достаточное условие возрастания функции Теорема. Если функция f имеет неотрицательную производную в каждой точке интервала (а;b), то функция f возрастает на интервале (а;b).

Достаточное условие убывания функции Теорема. Если функция имеет неположительную производную в каждой точке интервала (а;b), то функция f убывает на интервале (а;b).

Правило нахождения интервалов монотонности 1) Вычисляем производную f `(x) данной функции f(x), а затем находим точки, в которых f `(x) равна нулю или не существует. Эти точки называются критическими для функции f(x)

Правило нахождения интервалов монотонности 2) Критическими точками область определения функции f(x) разбивается на интервалы, на каждом из которых производная f `(x) сохраняет свой знак. Эти интервалы будут интервалами монотонности.

Правило нахождения интервалов монотонности 3) Определим знак f `(x) на каждом из найденных интервалов. Если на рассматриваемом интервале f `(x) 0, то на этом интервале f(x) возрастает, если же f `(x) 0, то на таком интервале f(x) убывает.

Исследование экстремумов функции Необходимое условие экстремума. (теорема Ферма) Если точка х 0 является точкой экстремума функции f и в этой точке существует производная f `(x), то она равна нулю: f `(x) = 0.

Теорема Ферма лишь необходимое условие экстремума. Например, производная функции f(x) = x 3 обращается в нуль в точке 0, но экстремума в этой точке функция не имеет. X Y

Достаточные условия существования экстремума в точке Признак максимума функции. Если функция f непрерывна в точке х 0, а f `(x) > 0 на интервале (а; х 0 ), и f `(x) < 0 на интервале (х 0 ; b), то точка х 0 является точкой максимума функции f. X Y

Достаточные условия существования экстремума в точке Признак минимума функции. Если функция f непрерывна в точке х 0, f `(x) < 0 на интервале (а; х 0 ) и f `(x) > 0 на интервале (х 0 ; b), то точка х 0 является точкой минимума функции f X Y

Достаточные условия выпуклости и вогнутости графика функции Т е о р е м а. Пусть функция f(x), х (а;b), имеет первую и вторую производные. Тогда, если f ``(x) 0 для всех х (а;b), то график функции f(x) выпуклый вниз на (а;b).

2 По графику производной некоторой функции укажите интервалы, на которых функция возрастает, убывает, имеет максимум, имеет минимум.

у = x 3 – 3x 2 + x + 5 у = (x 2 – 1) 2

Спасибо за внимание!!!