Муниципальное бюджетное общеобразовательное учреждение «Средняя общеобразовательная школа 77 города Хабаровска»

Презентация:



Advertisements
Похожие презентации
Муниципальное общеобразовательное учреждение «Средняя общеобразовательная школа 1 города Суздаля» Факультативное занятие в 6 классе по теме: Учитель математики:
Advertisements

Г. ЕКАТЕРИНБУРГ МОУ-ГИМНАЗИЯ 13 УЧИТЕЛЬ АНКИНА Т.С. Комбинаторные задачи. Комбинаторика. выбор расположение перестановки n!
Факториал 9 класс. В семье – шесть человек, а за столом в кухне – шесть стульев. В семье решили каждый вечер, ужиная, рассаживаться на эти шесть стульев.
Комбинаторные задачи. Комбинаторика. выбор расположение перестановки n!
Комбинаторные задачи. Комбинаторика. выбор расположение перестановки n!
Тема урока: «Комбинаторные задачи. Правило умножения» Предмет: алгебра Класс: 9 Тип урока: рефлексия.
Г. ЕКАТЕРИНБУРГ МОУ-ГИМНАЗИЯ 13 УЧИТЕЛЬ АНКИНА Т.С. Комбинаторные задачи. Комбинаторика. выбор расположение перестановки n!
Расписание проведения ОГЭ в 2015 году – 9 класс. 27 мая (среда) математика; 29 мая (пятница) обществознание, химия, литература, информатика и ИКТ; 03 июня.
Перестановки Урок алгебры 9 класс.. Основная цель- познакомить учащихся с простейшими комбинациями, составленные из элементов конечного множества или.
LOGO Элементы комбинаторики..
Перестановки. Размещения. Сочетания. Урок решения комбинаторных задач 9 класс Захарова Л.Г МБОУ «ОСОШ 2», Устьянский район.
Муниципальное общеобразовательное учреждение «Средняя общеобразовательная школа 1 города Суздаля» Факультативное занятие в 6 классе по теме: Учитель математики:
Комбинаторика - раздел математики, в котором изучаются вопросы о том, сколько различных комбинаций, подчиненных тем или иным условиям, можно составить.
Существуют два типа задач, связанных с размещениями: 1) из п элементов составить все возможные размещения по р в каждом; 2) определить сколько различных.
Сочетания Сочетания Определение 1 Сочетанием из n элементов по k называется всякая совокупность попарно различных k элементов, выбранных каким-либо способом.
Перестановки. Задача 1. Антону, Борису и Виктору повезло, и они купили 3 билета на футбол на 1,2 и 3-е места первого ряда стадиона. Сколькими способами.
Элементы комбинаторики перестановки. От турбазы к горному озеру ведут 4 тропы. Сколькими способами туристы могут отправиться в поход к озеру, если они.
Комбинаторика. Определение множества Множество есть совокупность объединенных по некоторым признакам различных объектов, называемых элементами множества.
Размещение Пусть имеется 4 шара и 3 пустых ячейки. Обозначим шары буквами a, b, c и d. Каждую упорядоченную тройку, которую можно составить из четырех.
Сколькими способами можно распределить уроки в шести классах между тремя учителями, если каждый учитель будет преподавать в двух классах?
Транксрипт:

Муниципальное бюджетное общеобразовательное учреждение «Средняя общеобразовательная школа 77 города Хабаровска»

Теорема о перестановках элементов конечного множества: n различных элементов можно расставить по одному на n различных мест ровно n! способами. Перестановкой называется множество из n элементов, записанных в определённом порядке. Определение: Р n =n! Запомните!!!

Расставляем предметы по порядку ПредметЧисло вариантов Математика 6 Литература5 Русский язык 4 Английский язык 3 Биология 2 1 Физкультура Всего вариантов расписания =720 Задача: В 6 классе в среду 6 уроков: математика, литература, русский язык, английский язык, биология и физкультура. Сколько вариантов расписания можно составить? 720

В 8 классе во вторник 5 уроков: физкультура, русский язык, литература, обществознание и математика. Сколько можно составить вариантов расписания на день, зная точно, что математика - последний урок? Ответ: 24 варианта Задача: Чем отличается эта задача от предыдущей? Какой предмет можно не учитывать при составлении расписания? 4!=24

Сколькими способами можно переставить буквы в слове «эскиз»? Задача: 5!=120

6 Задача: Сколько слов можно получить, переставляя буквы в слове «переправа»? Чем отличается эта задача от предыдущей? Запишем следующую формулу: где к –сумма повторений различных букв, а к 1,к 2,… - повторения каждой различной буквы. Разберём эту формулу на нашем примере: Буква «п» встречается 2 раза, «е» – 2 раза, «р» – 2 раза, «а» – 2 раза, «в» – 1 раз, значит, к= =9, к 1 =2,к 2 =2,к 3 =2,к 4 =3,к 5 =1. Подставим полученные значения в формулу: 22680

7 Сколько слов можно получить, переставляя буквы в словах: «молоко»? «математика»? Задача для самостоятельного решения:

Выполнил: Шпилько Александр