Кривые второго порядка где a, b, c, d, e, f вещественные коэффициенты, причем a 2 + b 2 + c 2 0 Кривой 2-го порядка называется линия на плоскости, которая.

Презентация:



Advertisements
Похожие презентации
Кривые второго порядка.. Общее уравнение кривой второго порядка имеет вид.
Advertisements

Эллипс.Гипербола.Парабола
Кривые второго порядка Выполнила: студентка группы 2У31 Полымская Дарья.
Кривые второго порядка Общее уравнение кривой второго порядка Окружность Эллипс Гипербола Парабола.
Уравнения эллипса, гиперболы и параболы Подготовили ученицы 8 «Б» класса: Оспанова Радхарани и Байтенизова Аружан.
{ эллипс – гипербола – парабола – исследование формы – параметрические уравнения – эксцентриситет, фокальные радиусы и параметр – директрисы – полярное.
Линии второго порядка. Линии, задаваемые на координатной плоскости уравнениями второго порядка, называются фигурами второго порядка. К ним относятся эллипс,
Кривые второго порядка Лекция 11. Кривой второго порядка называется линия, определяемая уравнением второй степени относительно текущих координат х и у.
§ 16. Кривые второго порядка Кривые второго порядка делятся на 1) вырожденные и 2) невырожденные Вырожденные кривые второго порядка это прямые и точки,
§ 5. Кривые второго порядка Кривые второго порядка делятся на 1) вырожденные и 2) невырожденные Вырожденные кривые второго порядка это прямые и точки,
3. Парабола Пусть – некоторая прямая на плоскости, F – некоторая точка плоскости, не лежащая на прямой. ОПРЕДЕЛЕНИЕ. Параболой называется геометрическое.
Декартова система координат в пространстве и на плоскости. Полярная система координат на плоскости. Прямая на плоскости. Кривые второго порядка.
Линейная алгебра и аналитическая геометрия Лектор Ефремова О.Н г. Тема: Кривые второго порядка.
Тема 6 «Кривые второго порядка» Кафедра математики и моделирования Старший преподаватель Г.В. Аверкова Курс «Высшая математика» Окружность, эллипс, гипербола,
Кривые второго порядка. Окружность Приведение к каноническому виду Выделение полного квадрата.
Кафедра математики и моделирования Старший преподаватель Е.Г. Гусев Курс «Высшая математика» Лекция 4. Тема: Прямая на плоскости. Цель: Изучить виды уравнений.
Тема 7 «Вывод канонического уравнения эллипса» Кафедра математики и моделирования Старший преподаватель Г.В. Аверкова Курс «Высшая математика» Исследование.
Работу выполнила Ученица 10 «Б» класса Шамсутдинова Ляйсан Учитель Шамсутдинова Р.Р. Школа г.
Лекционно-практическое занятие по теме Аналитическая геометрия на плоскости.
Поверхности и кривые второго порядка. Кривые второго порядка Кривые второго порядка делятся на 1) вырожденные и 2) невырожденные Вырожденные кривые второго.
Транксрипт:

Кривые второго порядка где a, b, c, d, e, f вещественные коэффициенты, причем a 2 + b 2 + c 2 0 Кривой 2-го порядка называется линия на плоскости, которая в некоторой декартовой системе координат определяется уравнением Кривые второго порядка : Окружность Эллипс Гипербола Парабола

Окружность y 0 х М(x; y) Окружностью называется геометрическое место точек на плоскости, равноудаленных от точки А(a; b) на расстояние R. Каноническое уравнение окружности А R

Эллипс Эллипсом называется геометрическое место точек, сумма расстояний от каждой из которых до двух точек той же плоскости F 1 и F 2, называемых фокусами, есть величина постоянная, равная 2а. y 0 х F1F1 F2F2 -cc r1r1 r2r2 M(x; y)

b2b2 Каноническое уравнение окружности

Гипербола Гиперболой называется геометрическое место точек, разность расстояний от каждой из которых до двух точек той же плоскости F 1 и F 2, называемых фокусами, есть величина постоянная, равная 2а. F1F1 F2F2 -c c M(x; y) r1r1 r2r2 y 0 х

Гипербола После тождественных преобразований уравнение примет вид: Каноническое уравнение гипербола

Гипербола

Парабола Параболой называется геометрическое место точек на плоскости, для каждой из которых расстояние до некоторой фиксированной точки той же плоскости, называемой фокусом, равно расстоянию до прямой: y 0 х F M(x; y) d r

Парабола Каноническое уравнение параболы