Свойства функций Демонстрационный материал. Четная функция у х 0 1 1 y=f(x) График четной функции симметричен относительно оси ОУ Функция у=f(x) называется.

Презентация:



Advertisements
Похожие презентации
Свойства функций Область определения, множество значений, четность, нечетность, периодичность.
Advertisements

Свойства функций Область определения, множество значений, четность, нечетность, периодичность.
Функции и их графики Задание для устного счета Упражнение класс.
Нули функции. Четность, нечетность функции. Число a называется нулем функции, если соответствующее ему значение функции равно нулю, то есть f (а)=0.
Свойства функций Демонстрационный материал 11 класс Все права защищены. Copyright с Copyright с.
Четные и нечетные функции.. Определение Чётные функции 1. Область определения функции D(f) – симметричное множество; 2. Для любого х Х выполняется.
Функции и их графики Задание для устного счета Упражнение класс.
Четные и нечетные функции. Периодичность функций Демонстрационный материал 10 класс.
Свойства функций Чтение свойств функций по их графикам.
Свойства функций. 1)Возрастание и убывание функций. ! Функцию у = f (x) называют возрастающей на множестве Х D (f), если для любых точек х 1.
Чётность, нечётность, периодичность функций. у х у = f (x) График чётной функции симметричен относительно оси ОУ Функция у = f (x) с D(f) = X называется.
Свойства функций Чтение свойств функций по их графикам Для подготовки учащихся к ЕГЭ Задания для устного счета. Для подготовки учащихся к ЕГЭ Составила:
Вопросы: 1. Независимая переменная (х) 2. Наглядный способ задания функции (графический) 3. График четной функции симметричен относительно чего (Оу) 4.
Четные нечетные функции А-9 урок 1. Степенная функция х у 1.Область определения степенных функций такого вида - все действительные числа. n – нечетное.
Степенная функция 9 класс. Нам знакомы функции х у х у х у х у ПрямаяПарабола Кубическаяпарабола Гипербола у = ху = х 2 у = х 3.
Четные и нечетные функции Цели урока: 1.Изучить определение четной и нечетной функций 2.Научить определять четность функций, заданных формулой 2.Научить.
ЗАДАНИЕ НА ДОМ § 11 (записать алгоритм исследования функции на чётность), (в, г) (в, г) 11.5.
СВОЙСТВА ФУНКЦИЙ Домашнее задание: § 2, теория в конспекте 2.13.
Математический диктант Общие свойства функций. Вариант 1Вариант 2 Задача 1 Найти область определения функции.
Свойства функций Область определения, множество значений, чётность, нечётность, возрастание, убывание.
Транксрипт:

Свойства функций Демонстрационный материал

Четная функция у х y=f(x) График четной функции симметричен относительно оси ОУ Функция у=f(x) называется четной, если f(-x) = f(x) для любого х из области определения функции

Примеры четных функций График данной функции симметричен относительно оси Оу

Примеры четных функций График данной функции симметричен относительно оси Оу х

Нечетная функция у х y=f(x) График нечетной функции симметричен относительно начала координат О(0;0) Функция у=f(x) называется нечетной, если f(-x) = -f(x) для любого х из области определения функции

Примеры нечетных функций График данной функции симметричен относительно начала координат х А А 1

Примеры нечетных функций График данной функции симметричен относительно начала координат х А А 1

Периодические функции Функция называется периодической, если существует такое число Т = 0, что для любого х из области определения этой функции выполняется равенство f(x-T)=f(x)=f(x+T) у х01 1 y=f(x) Графики периодических функций: Т T T

Функции и их графики Задание для устного счета

у х y=f(x) Назовите свойства функции, заданной на отрезке [-4; 4], по ее графику, используя план ответа. 1. Область определения функции. 2. Область значений функции. 3. Четность, нечетность. 4. Промежутки возрастания, убывания. 5. Нули функции. 6. Наибольшее, наименьшее значения функции. 7. Положительные, отрицательные значения функции.

0 1 1 х у Определите, является ли данная функция, четной, нечетной, периодической.