МНОЖЕСТВО ЭЛЕМЕНТ МНОЖЕСТВА СПОСОБЫ ЗАДАНИЯ МНОЖЕСТВ ПОДМНОЖЕСТВО ПЕРЕСЕЧЕНИЕ МНОЖЕСТВ ОБЪЕДИНЕНИЕ МНОЖЕСТВ ВЫЧИТАНИЕ МНОЖЕСТВ ДЕКАРТОВО ПРОИЗВЕДЕНИЕ МНОЖЕСТВ.

Презентация:



Advertisements
Похожие презентации
Лучший способ изучить что-либо - это открыть самому. (Д. Пойа)
Advertisements

Теория множеств. Определение Множество одно из ключевых понятий математики, в частности, теории множеств и логики. Понятие множества является одним из.
Лекция 1 Основные понятия ст.преп Касекеева А.Б..
Математика Разработано учителем математики МОУ «СОШ» п. Аджером Корткеросского района Республики Коми Мишариной Альбиной Геннадьевной Множество. Операции.
Множества. Операции над множествами.. «Множество есть многое, мыслимое нами как единое» (Георг Кантор)
Определение множества Множество – это совокупность однотипных элементов или объектов, объединённых по некоторому признаку. Например, множество книг в.
Элементы теории множеств. Понятие множества Множество - это совокупность определенных различаемых объектов, причем таких, что для каждого можно установить,
Понятия теории множеств П онятие множества является одним из наиболее общих и наиболее важных математических понятий. Оно было введено в математику немецким.
Урок 4 Множества. Множество есть многое, мыслимое нами как единое Георг Кантор.
Множество. Элемент множества.. Множество: множество четных чисел; множество двузначных чисел; множество правильных дробей со знаменателем 5; множество.
множества конечные бесконечные Задание: объясните эти понятия. Л.П.Стойлова «Математика»стр.6-7 пустые.
Группа предметов или некоторых объектов, объединённых общим свойством, образуют множества. Примеры: Учащиеся 9 «А» класса; Осенние месяцы; Чертёжные инструменты;
ПППП аааа рррр аааа лллл лллл ееее лллл оооо гггг рррр аааа мммм мммм ПППП рррр яяяя мммм оооо уууу гггг оооо лллл ьььь нннн ииии кккк КККК вввв аааа.
Основные понятия теории множеств Самостоятельная работа Арифметические операции Основные термины Свойства арифметических операций.
Об этом макете: ВНИМАНИЕ! Мелки – это ссылки: Красный – завершает показ слайдов Белый – возвращает в начало Оранжевый – возвращает на шаг назад Зеленый.
Что такое функция? Функции и их свойства. Алгебра 9 класс..
Глава II. ТЕОРИЯ МНОЖЕСТВ 1. Основные понятия теории множеств Множество – некоторая совокупность объектов, называемых элементами этого множества. Понятие.
Прямоугольный треугольник.. Треугольник, у которого один угол равен 90º, называется прямоугольным треугольником. С С вввв оооо йййй сссс тттт вввв аааа.
Выполнил: Студент группы С-215 Маёнов К.А.. Георг Кантор ( ) Профессор математики и философии, основоположник современной теории множеств. «Под.
Множества, операции над ними. «Множество есть многое, мыслимое нами как единое». Основоположник теории множеств немецкий математик Георг Кантор ( )
Транксрипт:

МНОЖЕСТВО ЭЛЕМЕНТ МНОЖЕСТВА СПОСОБЫ ЗАДАНИЯ МНОЖЕСТВ ПОДМНОЖЕСТВО ПЕРЕСЕЧЕНИЕ МНОЖЕСТВ ОБЪЕДИНЕНИЕ МНОЖЕСТВ ВЫЧИТАНИЕ МНОЖЕСТВ ДЕКАРТОВО ПРОИЗВЕДЕНИЕ МНОЖЕСТВ выход

Понятие множества простейшее математическое понятие, оно не определяется, а лишь поясняется при помощи примеров: множество книг на полке, множество точек на прямой (точечное множество) и т. д. Множества принято обозначать прописными буквами латинского алфавита: A, B, C… Z. множества конечные бесконечны е Множество дней недели, Множество месяцев в году Множество точек на прямой, Множество натуральных чисел

Объекты, из которых образовано множество, называются элементами. Элементы множества принято обозначать строчными буквами латинского алфавита: a, b, c… z. Если элемент х принадлежит множеству М, то записывают х О М, если не принадлежит – x П M Если множество не содержит ни одного элемента, оно называется пустым и обозначается или 0.

Множество можно задать… Перечислив все его элементы Указав характеристическое характеристическое свойство свойство его элементов А = {3, 4, 5, 6} Множество А двузначных чисел: свойство, которым обладает каждый элемент данного множества, - «быть двузначным числом».

Характеристическое свойство – это такое свойство, которым обладает каждый элемент, принадлежащий множеству, и не обладает ни один элемент, который ему не принадлежит. Этот способ задания множеств является общим и для конечных множеств, и для бесконечных. «Множество А натуральных чисел, меньших 7»: А = {x | x N и x

Множество В является подмножеством множества А (В А), если каждый элемент множества В является также элементом множества А. Пустое множество считают подмножеством любого множества. Любое множество является подмножеством самого себя. Отношения между множествами наглядно представляют при помощи кругов Эйлеракругов Эйлера

Круги Эйлера – это особые чертежи, при помощи которых наглядно представляют отношения между множествами. Множества А и В имеют общие элементы, но ни одно из них не является подмножеством другого В М А А М В А = В Множества А и В не пересекаются АВА А А В ВВ А=В

Пересечение множеств множество, состоящее из всех тех элементов, которые принадлежат одновременно всем данным множествам. Пересечение множеств А и В обозначают А В. Если множества А и В не имеют общих элементов, то пишут: А З В = Ж Характеристическое свойство формулируется путем соединения характеристических свойств пересекаемых множеств союзом «и». Например, если А – множество четных натуральных чисел, а В – двузначных чисел, то элементы их пересечения обладают свойством: «быть четными натуральными и двузначными числами» А В

Объединением множеств А и В называется множество, содержащее те и только те элементы, которые принадлежат множеству А или множеству В. Объединение множеств А и В обозначают А И В АВ Характеристическое свойство формулируется путем соединения характеристических свойств пересекаемых множеств союзом «или». Например, если А – множество четных натуральных чисел, а В – двузначных чисел, то элементы их объединения обладают свойством: «быть четными натуральными и двузначными числами»

Разностью множеств А и В называется множество, содержащее те и только те элементы, которые принадлежат множеству А и не принадлежат множеству В. Разность А и В Разность множеств А и В обозначают А \ В. А В А \ В Пусть В М А. Дополнением множества В до множества А называется множество, содержащее те и только те элементы множества А, которые не принадлежат множеству В. Дополнение множества В до множества А обозначают В'А А В В'АВ'А Общий вид характеристического свойства: «x А и x В»

Декартовым произведением множеств А и В называется множество всех пар, первая компонента которых принадлежит множеству А, а вторая компонента принадлежит множеству В. Декартово произведение обозначают А X В. Операцию нахождения декартова произведения множеств называют декартовым умножением. Если множества А и В конечны и содержат небольшое число элементов, можно изобразить декартово произведение этих множеств при помощи гггг рррр аааа фффф аааа и и и и лллл ииии т т т т аааа бббб лллл ииии цццц ыыыы. Декартово произведение двух числовых множеств (конечных и бесконечных) можно изображать н н н н н аааа кккк оооо оооо рррр дддд ииии нннн аааа тттт нннн оооо йййй пппп лллл оооо сссс кккк оооо сссс тттт ииии....

А = {1, 2, 3} В = {3, 5} АВ граф таблица

А = {1, 2, 3} В = {3, 5}