Высокопроизводительный программный комплекс моделирования экстремальной динамики морских плавучих объектов Ship X- DS Безгодов А.А., Иванов С.В.
2 Особенности постановки задачи: моделирование динамики судна в экстремальных ситуациях -Реалистичное воспроизведение внешних воздействий (нерегулярное волнение, а не «расчетная синусоида») -Учет нелинейных эффектов, в т.ч. обусловленных взаимодействием различных видов колебаний -Выполнение расчетов в реальном масштабе времени
3 Схема системы имитационного моделирования динамики судна Rendering Sound Physics Scripting ENGINE UI … Ship X -DS Floating body Wave model Predictor Mathcad, Methematica, MatLab Scenario
4 Подходы к моделированию динамики судна Механический: 6DOF-тв. тело + коэффициенты - Грубый метод, позволяет отражать только отдельные классы экстремальных ситуаций - Затруднен учет сложных обводов корпуса - Является эталоном для расчета качки в оперативном (не экстремальном) режиме эксплуатации (В. Фруд – 1861, А.Н. Крылов – 1891, опыт судостроения) Гидродинамический: 3D задача + заданные гран. усл. -Крайне ресурсоемкий расчет - - Адекватность «бассейну» (воспроизводимость модельного эксперимента) Комбинированный: - Точный ГС-расчет - Прибл. ГД-расчет - Менее точный, чем гидродинамический (10-15 %). - Не требует настройки структуры уравнений под конкретный класс экстремального явления - Вычислительно эффективен
5 Силы, действующие на судно
6 Использование нерегулярных сеток для интегрирования сил и моментов по корпусу N/m 2
7 Анализ накопления вычислительной ошибки в процессе интегрирования (характеристики дрейфа судна длиной L=60 м) 3 минуты:< 20 см < 1 ° точка/м точки/м точек/м точек/м 2
8 Имитационная модель vs. Уравнения движения (1): Виртуальное кренование Уравнение бортовой качки: ν, η - ?
9 Имитационная модель vs. Уравнения движения (2): Интерпретация абстракции редукционного коэффициента Редукционный коэффициент: κ(ω) - ?
11 Применение программного комплекса (2): Прогноз развития экстремальных ситуаций в бортовых системах поддержки принятия решений
12 Способы распараллеливания расчетов Распараллеливание вычисления интегралов по корпусу –Дисбаланс нагрузки процессоров: нагрузка изменяется во времени (количество погруженных точек сетки вследствие качки) Распараллеливание вычисления динамики судна во времени (с учетом стохастичности волнения) –Зависимость от предыстории: нужен «перехлест» на 3-5 минут по времени Распараллеливание по отдельным сценариям (например, сочетанием скорости и курсового угла) - Существенный дисбаланс нагрузки –Разное время для сбора статистики (заданное число колебаний) –Разное время выявления экстремальных ситуаций –Потеря масштабируемости (количество сценариев ограничено)
13 Пример: распараллеливание интегрирования по корпусу судна (дисбаланс нагрузки) 4 CPU Каждый CPU - интегрирует свой участок корпуса Качка вызывает дисбаланс нагрузки (до 200%) Перемешивание (shuffle)
14 Распараллеливание прогноза экстремальных ситуаций Необходимость оценки времени прогноза на основе –Текущей ситуации –Использования экспертных знаний
15 Выводы Использование комбинированного (ГС+ГД) подхода позволяет в реальном времени осуществлять моделирование судна, при этом учитывать ряд явлений, учет которых недостижим при использовании механического подхода. Использование нерегулярных сеток позволяет эффективно решать задачу интегрирования сил по корпусу и балансировать нагрузку на CPU. Необходимо осуществлять предварительную оценку времени прогнозирования экстремальных ситуаций на основе текущей ситуации и экспертных знаний для обеспечения баланса нагрузки на вычислительных узлах.
16 Развитие системы
Вопросы?