ПИРАМИДА - монументальное сооружение, имеющее геометрическую форму пирамиды (иногда также ступенчатую или башнеобразную). Пирамидами называют гигантские.

Презентация:



Advertisements
Похожие презентации
апофема высота боковой грани правильной пирамиды, проведённая из её вершины; боковые грани треугольники, сходящиеся в вершине; боковые ребра общие стороны.
Advertisements

Геометрия Пирамида. Пирамида - многогранник, основание которого многоугольник, а остальные грани треугольники, имеющие общую вершину. По числу углов основания.
Пирамида Подготовили : Асадова Ламия, Шимонаев Павел, Волкова Екатерина, Балыбин Артем, Олзоев Тимур.
Пирамида.
11 класс геометрия. Конус можно описать около пирамиды, если ее основание – многоугольник, вписанный в окружность, а вершина пирамиды проецируется в центр.
Пирамида - многогранник, основание которого многоугольник, а остальные грани треугольники, имеющие общую вершину. По числу углов основания различают пирамиды.
Вписанные и описанные тела. Цилиндр, описанный около призмы Цилиндр можно описать около прямой призмы если ее основание – многоугольник, вписанный в окружность.
Комбинации многогранников и тел вращения Таск Ксения, 11 «Б»
Пирамида Пирамида. Построение изображения правильной треугольной пирамиды.
Пирамида Пирамидой называется многогранник, который состоит из плоского многоугольника – основания пирамиды, точки, не лежащей в плоскости основания, -
Пирамида высотой Перпендикуляр, проведенный из вершины пирамиды к плоскости основания, называется высотойпирамиды А 1 А 1 А 2 А 2 АnАn Р А 3 А 3 Многогранник,
Пирамида Многогранник, составленный из многоугольника A 1 A 2 …A n и n треугольников называется n-угольной пирамидой.
П ИРАМИДА Работа: Хусаиновой Ирины Исламовой Адели 10 «И» класс.
А1А1 А2А2 АnАn Р А3А3 Многогранник, составленный из n-угольника А 1 А 2 …А n n треугольников, называется пирамидой. Вершина Н высотой пирамиды Перпендикуляр,
Математические диктанты. Двугранный, трёхгранный углы. Многогранник. Вопрос 1. Сколько рёбер у двугранного угла? 2. Сколько рёбер у трёхгранного угла?
Содержание 1 История развития геометрии пирамиды 2 Элементы пирамиды 3 Развёртка пирамиды 4 Свойства пирамиды 5 Теоремы, связывающие пирамиду с другими.
пирамида
Презентация по геометрии Тема: «Пирамида». Определение Пирамидой называется многогранник, который состоит из плоского многоугольника --- основания пирамиды,
УСЕЧЕННАЯ ПИРАМИДА Плоскость параллельная основанию пирамиды, разбивает её на два многогранника. Один из них является пирамидой, а другой называется усечённой.
Призма Многогранник, составленный из двух равных многоугольников A 1 A 2 …A n и B 1 B 2 …B n, расположенных в параллельных плоскостях, и n параллелограммов,
Транксрипт:

ПИРАМИДА - монументальное сооружение, имеющее геометрическую форму пирамиды (иногда также ступенчатую или башнеобразную). Пирамидами называют гигантские гробницы древнеегипетских фараонов 3-2-го тыс. до н. э., а также древнеамериканские постаменты храмов (в Мексике, Гватемале, Гондурасе, Перу), связанные с космологическими культами.

апофема высота боковой грани правильной пирамиды; боковые грани треугольники, сходящиеся в вершине пирамиды; боковые ребра общие стороны боковых граней; вершина пирамиды точка, соединяющая боковые рёбра и не лежащая в плоскости основания; высота отрезок перпендикуляра, проведённого через вершину пирамиды к плоскости её основания (концами этого отрезка являются вершина пирамиды и основание перпендикуляра); диагональное сечение пирамиды сечение пирамиды, проходящее через вершину и диагональ основания; основание многоугольник, которому не принадлежит вершина пирамиды

Цилиндр Цилиндр называется вписанным в пирамиду, если вершина пирамиды принадлежит его одному основанию, а другое его основание совпадает с окружностью вписанной в сечение пирамиды плоскостью, параллельной основанию. Причём вписать цилиндр в пирамиду можно только тогда, когда в основании пирамиды описанный многоугольник (необходимое и достаточное условие); Цилиндр называется описанным около пирамиды, если вершина пирамиды принадлежит его одному основанию, а другое его основание описано около основания цилиндра. Причём описать цилиндр около пирамиды можно только тогда, когда в основании пирамиды вписанный многоугольник (необходимое и достаточное условие).