ДВУГРАННЫЙ УГОЛ. УГОЛ МЕЖДУ ПЛОСКОСТЯМИ Двугранным углом называется фигура, образованная двумя полуплоскостями с общей граничной прямой. Линейным углом.

Презентация:



Advertisements
Похожие презентации
ДВУГРАННЫЙ УГОЛ. УГОЛ МЕЖДУ ПЛОСКОСТЯМИ Двугранным углом называется фигура, образованная двумя полуплоскостями с общей граничной прямой. Линейным углом.
Advertisements

ДВУГРАННЫЙ УГОЛ. УГОЛ МЕЖДУ ПЛОСКОСТЯМИ Двугранным углом называется фигура, образованная двумя полуплоскостями с общей граничной прямой. Линейным углом.
ДВУГРАННЫЙ УГОЛ Двугранным углом называется фигура (рис. 1), образованную двумя полуплоскостями, с общей ограничивающей их прямой, и частью пространства,
ДВУГРАННЫЙ УГОЛ Двугранным углом называется фигура (рис. 1), образованная двумя полуплоскостями, с общей ограничивающей их прямой, и частью пространства,
УГОЛ МЕЖДУ ПРЯМЫМИ В ПРОСТРАНСТВЕ Углом между двумя пересекающимися прямыми в пространстве называется наименьший из углов, образованных лучами этих прямых.
УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ Углом между наклонной и плоскостью называется угол между этой наклонной и ее ортогональной проекцией на данную плоскость.
1. В кубе A…D 1 найдите угол между прямыми AB 1 и BC 1. Ответ: 60 o.
ДВУГРАННЫЙ УГОЛ. УГОЛ МЕЖДУ ПЛОСКОСТЯМИ Двугранным углом называется фигура, образованная двумя полуплоскостями с общей граничной прямой. Линейным углом.
ДВУГРАННЫЙ УГОЛ Двугранным углом называется фигура (рис. 1), образованную двумя полуплоскостями, с общей ограничивающей их прямой, и частью пространства,
Угол между прямыми в пространстве Углом между двумя пересекающимися прямыми в пространстве называется наименьший из углов, образованных лучами этих прямых.
РАССТОЯНИЕ МЕЖДУ ПРЯМЫМИ В ПРОСТРАНСТВЕ Расстоянием между двумя непересекающимися прямыми в пространстве называется длина общего перпендикуляра, проведенного.
РАССТОЯНИЕ ОТ ТОЧКИ ДО ПЛОСКОСТИ Расстоянием от точки до плоскости в пространстве называется длина перпендикуляра, опущенного из данной точки на данную.
УГОЛ МЕЖДУ ПРЯМЫМИ В ПРОСТРАНСТВЕ Углом между двумя пересекающи- мися прямыми в пространстве называется наименьший из углов, образованных лучами этих прямых.
РАССТОЯНИЕ ОТ ТОЧКИ ДО ПРЯМОЙ Расстоянием от точки до прямой в пространстве называется длина перпендикуляра, опущенного из данной точки на данную прямую.
Угол в пространстве Углом в пространстве называется фигура, образованная двумя лучами с общей вершиной и одной из частей плоскости, ограниченной этими.
УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ Углом между наклонной и плоскостью называется угол между этой наклонной и ее ортогональной проекцией на данную плоскость.
Геометрия Решение задачГеометрия Решение задачУстно…
1 Подготовка к ЕГЭ Задания С 2. Углом между наклонной и плоскостью называется угол между этой наклонной и ее проекцией на данную плоскость. Прямая, перпендикулярная.
УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ Углом между наклонной и плоскостью называется угол между этой наклонной и ее ортогональной проекцией на данную плоскость.
Р ЕШЕНИЕ ЗАДАНИЙ С 2. В ЕДИНИЧНОМ КУБЕ АВСDА 1 В 1 С 1 D 1 НАЙДИТЕ УГОЛ МЕЖДУ ПРЯМЫМИ АВ 1 И ВС 1. Решение: Введем систему координат, считая началом координат.
Транксрипт:

ДВУГРАННЫЙ УГОЛ. УГОЛ МЕЖДУ ПЛОСКОСТЯМИ Двугранным углом называется фигура, образованная двумя полуплоскостями с общей граничной прямой. Линейным углом двугранного угла называется угол, образованный лучами с вершиной на граничной прямой, стороны которого лежат на гранях двугранного угла и перпендикулярны граничной прямой. Величиной двугранного угла называется величина его линейного угла. Углом между двумя пересекающимися плоскостями называется наименьший из двугранных углов, образованных этими плоскостями.

В правильной треугольной призме ABCA 1 B 1 C 1, все ребра которой равны 1, найдите угол между плоскостями ABC и BB 1 C 1. Ответ: 90 o.

В правильной треугольной призме ABCA 1 B 1 C 1, все ребра которой равны 1, найдите угол между плоскостями ABC и A 1 B 1 C. Решение: Обозначим O, O 1 - середины ребер AB и A 1 B 1. Искомым линейным углом будет угол OCO 1. В прямоугольном треугольнике OCO 1 имеем OO 1 = 1; OC = Следовательно,

В правильной треугольной призме ABCA 1 B 1 C 1, все ребра которой равны 1, найдите угол между плоскостями ABC и ACB 1. Решение: Обозначим O - середину ребра AC. Искомым линейным углом будет угол BOB 1. В прямоугольном треугольнике BOB 1 имеем BB 1 = 1; BO = Следовательно,

В правильной треугольной призме ABCA 1 B 1 C 1, все ребра которой равны 1, найдите угол между плоскостями ACC 1 и BCC 1. Ответ: 60 o.

В правильной треугольной призме ABCA 1 B 1 C 1, все ребра которой равны 1, найдите угол между плоскостями ACB 1 и A 1 C 1 B. Решение: Данные плоскости пересекаются по прямой DE. Обозначим G середину DE и F середину AC. Угол BGF будет искомым. В треугольнике BGF имеем BF = ; BG = FG = По теореме косинусов, имеем