Большая часть классического численного анализа основывается на приближении многочленами, так как с ними легко работать. Однако для многих целей используются.

Презентация:



Advertisements
Похожие презентации
Методы обработки экспериментальных данных. Методы обработки экспериментальных данных: 1. Интерполирование 2. Метод Лагранжа.
Advertisements

Метод Ньютона: 1- и 2-я интерполяционные формулы Ньютона.
3. Алгоритмы приближения функций Если функция y = f(x) задана, то любому допустимому значению x сопоставляется некоторое значение y. Функция может быть.
Аппроксимация функций Понятие о приближении функций.
Л АБОРАТОРНАЯ РАБОТА 3 Тема: Интерполирование функций.
«Создание программного обеспечения для нахождения производных функций» Выполнил: Андрющенко Дмитрий, ученик 11 «В» класса. Научный руководитель: Симакова.
В практических применениях математики очень часто встречается такая задача: Это могут быть результаты эксперимента, данные наблюдений или измерений, статистической.
1. Постановка задачи аппроксимации 2. Метод наименьших квадратов 3. Линейная аппроксимация Лекция 8.
Постановка задачи аппроксимации Линейная, нелинейная (второго порядка) аппроксимация Лекция 5.
Л АБОРАТОРНАЯ РАБОТА 4 Тема: Численное дифференцирование Тема: Численное дифференцирование.
Л АБОРАТОРНАЯ РАБОТА 6 Тема: Численные методы решения задачи Коши для обыкновенных дифференциальных уравнений.
ИНТЕРПОЛЯЦИЯ И АППРОКСИМАЦИЯ Кафедра Информационных технологий и управляющих систем Предмет «Вычислительные методы и их применение в ЭВМ» Лекция Доцент.
Учебный курс Основы вычислительной математики Лекция 1 доктор физико-математических наук, профессор Лобанов Алексей Иванович.
ОЦЕНКА ПОГРЕШНОСТИ КОСВЕННЫХ ИЗМЕРЕНИЙ 1. Способы оценки погрешности косвенных измерений 2. Порядок оценки погрешности косвенных измерений.
Математический аппарат компьютерной графики. Интерполяция. Сплайны. Лекция 6.
Интерполирование функций. Постановка задачи: xx0x0 x1x1 x2x2 …xnxn yy0y0 y1y1 y2y2 …ynyn Функция задана таблично: Вычислить Вычислить: -сетка или узлы.
Математическая модель и численные методы. Интерполяционный полиномы Лекция 1:
Применение численных методов при моделировании химико-технологических процессов.
ЛЕКЦИЯ Приближенное решение обыкновенных дифференциальных уравнений: Метод Эйлера.
УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ - УПИ ИННОВАЦИОННАЯ ОБРАЗОВАТЕЛЬНАЯ ПРОГРАММА.
Транксрипт:

Большая часть классического численного анализа основывается на приближении многочленами, так как с ними легко работать. Однако для многих целей используются и другие классы функций. Если задана функция y(x), то это означает, что любому допустимому значению х сопоставлено значение у. Но нередко оказывается, что нахождение этого значения очень трудоёмко. Например, у(х) может быть определено как решение сложной задачи, в которой х играет роль параметра или у(х) измеряется в дорогостоящем эксперименте. При этом можно вычислить небольшую таблицу значений функции, но прямое нахождение функции при большом числе значений аргумента будет практически невозможно. Функция у(х) может участвовать в каких-либо физико-технических или чисто математических расчётах, где её приходится многократно вычислять. В этом случае выгодно заменить функцию у(х) приближённой формулой, то есть подобрать некоторую функцию (х), которая близка в некотором смысле к у(х) и просто вычисляется. Затем при всех значениях аргумента полагают у(х) (х).Если задана функция y(x), то это означает, что любому допустимому значению х сопоставлено значение у. Но нередко оказывается, что нахождение этого значения очень трудоёмко. Например, у(х) может быть определено как решение сложной задачи, в которой х играет роль параметра или у(х) измеряется в дорогостоящем эксперименте. При этом можно вычислить небольшую таблицу значений функции, но прямое нахождение функции при большом числе значений аргумента будет практически невозможно. Функция у(х) может участвовать в каких-либо физико-технических или чисто математических расчётах, где её приходится многократно вычислять. В этом случае выгодно заменить функцию у(х) приближённой формулой, то есть подобрать некоторую функцию (х), которая близка в некотором смысле к у(х) и просто вычисляется. Затем при всех значениях аргумента полагают у(х) (х).

Цель задачи о приближении (интерполяции): данную функцию у(х) требуется приблизительно заменить некоторой функцией (х), свойства которой нам известны так, чтобы отклонение в заданной области было наименьшим. интерполяционные формулы применяются, прежде всего, при замене графически заданной функции аналитической, а также для интерполяции в таблицах

Методы интерполяции Лагранжа и Ньютона Один из подходов к задаче интерполяции метод Лагранжа. Основная идея этого метода состоит в том, чтобы прежде всего найти многочлен, который принимает значение 1 в одной узловой точке и 0 во всех других. Легко видеть, сто функция

Сплайн-аппроксимация Другой метод аппроксимации сплайн-аппроксимация отличается от полиномиальной аппроксимации Лагранжем и Ньютоном. Сплайном называется функция, которая вместе с несколькими производными непрерывна на отрезке [a, b], а на каждом частном интервале этого отрезка [xi, xi+1] в отдельности являются некоторым многочленом невысокой степени. В настоящее время применяют кубический сплайн, то есть на каждом локальном интервале функция приближается к полиному 3-го порядка. Трудности такой аппроксимации связаны с низкой степенью полинома, поэтому сплайн плохо аппроксимируется с большой первой производной. Сплайновая интерполяция напоминает лагранжевую тем, что требует только значения в узлах, но не её производных.

Предположим, что требуется заменить некоторую величину и делается n измерений, результаты которых равны xi=x+ i (i=1, 2, …, n), где i это ошибки (или шум) измерений, а х истинное значение. Метод наименьших квадратов утверждает, что наилучшее приближённое значение есть такое число, для которого минимальна сумма квадратов отклонений от : Один из наиболее общих случаев применения этого метода состоит в том, что имеющиеся n наблюдений (xi, yi) (i=1, 2, …, n) требуется приблизить многочленом степени m

Для нахождения минимума дифференцируем по каждой из неизвестных a k. В результате получим: Определитель этой системы отличен от нуля и задача имеет единственное решение. Но система степеней не ортогональна, и при больших значениях n задача плохо обусловлена. Эту трудность можно обойти, используя многочлены ортогональные с заданным весом на заданной системе точек, но к этому прибегают только в задачах, связанных с особенно тщательной статической обработкой эксперимента.

Полиномы Чебышева Критерии согласия данного метода минимизация максимальной ошибки. Полиномы Чебышева определяются следующим образом: Tn(x)=cos(n arccos(x)) Например:T0(x)=cos(0)=1, T1(x)=cos( )=x, T2(x)=cos(2 )=cos2( )-sin2( )=2x2-1. Можно было бы и дальше использовать тригонометрические соотношения для нахождения полиномов Чебышева любого порядка, но будет лучше установить для них рекурентное соотношение, связывающее Tn+1(x), Tn(x) и Tn-1(x): Tn+1(x)=cos(n + )=cos(n )cos( )-sin(n )sin( ), Tn-1(x)=cos(n - )=cos(n )cos( )-sin(n )sin( ).

Рис. 1

Применяя полученные формулы можно найти любой полином Чебышева. Например, Т3(x)=2xT2(x)- T1(x). Подставляя значения T2(х) и Т1(х) имеем Т3(х)=2х(2х2-1)-х=4х3-3х. Графически первые 10 полиномов Чебышева изображены ниже. Последующие полиномы по-прежнему колеблются между +1 и -1, причём период колебания уменьшаются с ростом порядка полинома. Преобразования =arccos(x) можно рассматривать как проекцию пересечения полукруга с множеством прямых, имеющих равные углы между собой (рис.1). Таким образом, множество точек xj, на котором система чебышевских многочленов Tn(x) ортогональна, таково:, (j=0, 1, 2, …,N-1) Так как Tn(x) есть, по существу, cos(n ), то они являются равноколеблющимеся функциями, и так как они многочлены, то обладают всеми свойствами ортогональных многочленов. Чебышев показал, что из всех многочленов Рn(x) степени n старшим коэффициентом 1, у многочлена точная верхняя грань абсолютных значений на интервале -1 x 1 наименьшая. Так как верхняя грань Tn(x)=1, указанная верхняя грань равна.

Спасибо за внимание!!!!!!!