Классическое определение вероятности Решение задач.

Презентация:



Advertisements
Похожие презентации
Классическое определение вероятности Решение задач.
Advertisements

Цель урока : Выработать умение решать задачи на определение классической вероятности с использованием основных формул комбинаторики. Оборудование: карточки,
Комбинаторные методы решения задач. Памятка. При решении комбинаторных задач следует ответить на следующие вопросы: 1.Из какого множества осуществляется.
Вероятность события. Классическое определение вероятности Цель урока: Ввести понятие вероятность, классическое определение вероятности, формировать навык.
РЕШЕНИЕ ЗАДАЧ Орлова Л.В., Малышкина С.Ю. вероятность.
Цель: сформировать представление об основном понятии статистики и вероятности.
Элементы теории вероятностей Пустовая Е.В. - учитель математики МОУ гимназии 1 г.Апатиты.
Теория вероятности Основные понятия, определения, задачи.
Задача 1. Даша дважды бросает игральный кубик. В сумме у нее выпало 8 очков. Найдите вероятность того, что при одном из бросков выпало 2 очка.
Элементы комбинаторики, теории вероятностей и статистики Лаврова - Кривенко Я. В.
Комбинаторика и вероятность Тип урока- обобщающий. Цель урока: Повторить и закрепить правила и формулы комбинаторики, понятие вероятности. Способствовать.
«Элементы комбинаторики и теории вероятностей» МОУ « Сытьковская СОШ » Учителя математики: Селиверстова Л.Н., Аничкина В.В.
Еще больше презентаций на. Основы теории вероятности Основные понятия и определения.
Основы теории вероятности Основные понятия и определения.
Использование комбинаторных задач для подсчета вероятностей.
Введение в комбинаторику и теорию вероятностей. 1) КомбинаторикаКомбинаторика 2) ФакториалФакториал 3) ПерестановкиПерестановки 4) РазмещенияРазмещения.
Теория Вероятности ЗАДАЧИ В10. Задача. Студент при подготовке к экзамену не успел выучить один из тех 25 билетов, которые будут предложены на экзамене.
Введение в теорию вероятности. Эксперимент Монета ПопытокРешка Кнопка Попыток Острие вверх.
Презентация на тему: Презентация на тему: «Основы теории вероятностей» Презентацию подготовила: Струсевич Анастасия. Презентацию подготовила: Струсевич.
Случайные события. Основные термины. Статистическое определение вероятности События: невозможные, достоверные, случайные. Равновозможные события. Вероятность.
Транксрипт:

Классическое определение вероятности Решение задач.

Заполните таблицу: задания Испытание Число возможных исходов испытания (n) Событие А Число исходов, благоприятст- вующих событию (m) Вероят- ность события Р(А)=m/n 1 Подбрасывание игрального кубика Выпавшее число очков нечетно 2 Подбрасывание игрального кубика Выпавшее число очков кратно трем 3 Раскручивание стрелки рулетки, разделенной на 8 равных секторов, занумерованных числами от 1 до 8 Остановка стрелки на секторе с номером, кратным 4 4 Игра в лотерею (1500 билетов, из которых 120 выигрышных) Выиграли, купив один билет 5 Случайный выбор двузначного числа Число состоит из одинаковых цифр

Практикум по решению задач. Таня забыла последнюю цифру номера телефона знакомой девочки и набрала ее наугад. Какова вероятность того, что Таня попала к своей знакомой? Решение. Задача 1.

Практикум по решению задач. На четырех карточках написаны буквы О, Т, К, Р. Карточки перевернули и перемешали. Затем открыли наугад последовательно эти карточки и положили в ряд. Какова вероятность того, что получится слово «КРОТ»? Решение. Исходы – все возможные перестановки из четырех элементов (О, Т, К, Р); общее число исходов: Событие А = {после открытия карточек получится слово «КРОТ»}: Задача 2. О Т К Р

На четырех карточках написаны цифры 1, 2, 3, 4. Карточки перевернули и перемешали. Затем открыли наугад последовательно три карточки и положили в ряд. Какова вероятность того, что в результате получилось: а) число 123; б) число 312 или 321; в) число, первая цифра которого 2? Решение. Исходами опыта являются все возможные размещения четырех карточек на трех местах (порядок расположения важен). Общее число исходов: Практикум по решению задач. Задача б) Событие В={ из трех карточек образовано число 312 и 321},

На четырех карточках написаны цифры 1, 2, 3, 4. Карточки перевернули и перемешали. Затем открыли наугад последовательно три карточки и положили в ряд. Какова вероятность того, что в результате получилось: а) число 123; б) число 312 или 321; в) число, первая цифра которого 2? Решение. Рассмотрим события и их вероятности: а) Событие А={из трех карточек образовано число 123}, Практикум по решению задач. Задача б) Событие В={ из трех карточек образовано число 312 и 321},

На четырех карточках написаны цифры 1, 2, 3, 4. Карточки перевернули и перемешали. Затем открыли наугад последовательно три карточки и положили в ряд. Какова вероятность того, что в результате получилось: а) число 123; б) число 312 или 321; в) число, первая цифра которого 2? Решение. Практикум по решению задач. Задача б) Событие В={ из трех карточек образовано число 312 и 321},

в)Событие С={из трех карточек образовано число, первая цифра которого 2}. Если первая цифра фиксирована, то на оставшихся двух местах можно разместить любую из оставшихся трех цифр (с учетом порядка), то есть На четырех карточках написаны цифры 1, 2, 3, 4. Карточки перевернули и перемешали. Затем открыли наугад последовательно три карточки и положили в ряд. Какова вероятность того, что в результате получилось: а) число 123; б) число 312 или 321; в) число, первая цифра которого 2? Решение. Практикум по решению задач. Задача б) Событие В={ из трех карточек образовано число 312 и 321},

Практикум по решению задач. В ящике лежат 1 белый и три черных шара. Наугад вынимаются 2 шара. Какова вероятность того, что вынуты: 1) 2 черных шара; 2) белый и черный шар? Решение. Исходы – все возможные пары шаров. Общее число исходов 1) Событие А={вынуты два черных шара}; 2) Событие В={вынуты белый и черный шары}; Задача 4.

Практикум по решению задач. Cлучайным образом одновременно выбираются две буквы из 33 букв русского алфавита. Найдите вероятность того, что: 1) обе они согласные; 2) среди них есть «ъ»; 3) среди них нет «ъ»; 4) одна буква гласная, а другая согласная. Решение. 1) А={ обе выбранные буквы – согласные}. В русском языке 21 согласная буква, 10 гласных и 2 буквы («ь», «ъ») не обозначающие звуков. Задача 5.

Практикум по решению задач. Cлучайным образом одновременно выбираются две буквы из 33 букв русского алфавита. Найдите вероятность того, что: 1) обе они согласные; 2) среди них есть «ъ»; 3) среди них нет «ъ»; 4) одна буква гласная, а другая согласная. Решение. 2) В={среди выбранных букв есть «ъ»}. Задача 5.

Практикум по решению задач. Cлучайным образом одновременно выбираются две буквы из 33 букв русского алфавита. Найдите вероятность того, что: 1) обе они согласные; 2) среди них есть «ъ»; 3) среди них нет «ъ»; 4) одна буква гласная, а другая согласная. Решение. 3) С={среди выбранных букв нет «ъ»}. Задача 5.

Практикум по решению задач. Cлучайным образом одновременно выбираются две буквы из 33 букв русского алфавита. Найдите вероятность того, что: 1) обе они согласные; 2) среди них есть «ъ»; 3) среди них нет «ъ»; 4) одна буква гласная, а другая согласная. Решение. 4) D={среди выбранных букв одна буква гласная, а другая согласная}. Задача 5.

Дополнительные задачи: Задача 1. Четыре билета на елку распределили по жребию между 15 мальчиками и 12 девочками. Какова векроятность того, что билеты достанутся 2 мальчикам и 2 девочкам? Задача 2. Случайно нажимают три клавиши из одной октавы. Найдите вероятность того, что: звучат ноты «си» и «до»; не звучит нота «фа»; звучит нота «ля»; получится до-мажорное звучание.