РАССТОЯНИЕ МЕЖДУ ПРЯМЫМИ В ПРОСТРАНСТВЕ Расстоянием между двумя скрещивающимися прямыми в пространстве называется длина общего перпендикуляра, проведенного.

Презентация:



Advertisements
Похожие презентации
РАССТОЯНИЕ МЕЖДУ ПРЯМЫМИ В ПРОСТРАНСТВЕ Расстоянием между двумя непересекающимися прямыми в пространстве называется длина общего перпендикуляра, проведенного.
Advertisements

РАССТОЯНИЕ МЕЖДУ ПРЯМЫМИ В ПРОСТРАНСТВЕ Расстоянием между двумя непересекающимися прямыми в пространстве называется длина общего перпендикуляра, проведенного.
РАССТОЯНИЕ МЕЖДУ ПРЯМЫМИ В ПРОСТРАНСТВЕ Расстоянием между двумя непересекающимися прямыми в пространстве называется длина общего перпендикуляра, проведенного.
РАССТОЯНИЕ ОТ ТОЧКИ ДО ПЛОСКОСТИ Расстоянием от точки до плоскости в пространстве называется длина перпендикуляра, опущенного из данной точки на данную.
РАССТОЯНИЕ ОТ ТОЧКИ ДО ПРЯМОЙ Расстоянием от точки до прямой в пространстве называется длина перпендикуляра, опущенного из данной точки на данную прямую.
РАССТОЯНИЕ МЕЖДУ ПРЯМЫМИ В ПРОСТРАНСТВЕ Расстоянием между двумя непересекающимися прямыми в пространстве называется длина общего перпендикуляра, проведенного.
УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ Углом между наклонной и плоскостью называется угол между этой наклонной и ее ортогональной проекцией на данную плоскость.
РАССТОЯНИЕ ОТ ТОЧКИ ДО ПЛОСКОСТИ В ПРОСТРАНСТВЕ Расстоянием от точки до плоскости в пространстве называется длина перпендикуляра, опущенного из данной.
УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ Углом между наклонной и плоскостью называется угол между этой наклонной и ее ортогональной проекцией на данную плоскость.
ПЕРПЕНДИКУЛЯР И НАКЛОННАЯ Пусть дана плоскость π и точка A пространства. Через точку A проведем прямую a, перпендикулярную плоскости π. Точку пересечения.
РАССТОЯНИЕ МЕЖДУ ПРЯМЫМИ В ПРОСТРАНСТВЕ Расстоянием между двумя непересекающимися прямыми в пространстве называется длина общего перпендикуляра, проведенного.
ДВУГРАННЫЙ УГОЛ Двугранным углом называется фигура (рис. 1), образованную двумя полуплоскостями, с общей ограничивающей их прямой, и частью пространства,
ДВУГРАННЫЙ УГОЛ Двугранным углом называется фигура (рис. 1), образованная двумя полуплоскостями, с общей ограничивающей их прямой, и частью пространства,
РАССТОЯНИЕ И УГОЛ МЕЖДУ СКРЕЩИВАЮЩИМСЯ ПРЯМЫМИ (РЕШЕНИЕ ЗАДАЧ ГРУППЫ С 2 ЕГЭ)
ПЕРПЕНДИКУЛЯРНОСТЬ ПРЯМОЙ И ПЛОСКОСТИ Прямая называется перпендикулярной плоскости, если она перпендикулярна любой прямой, лежащей в этой плоскости. Теорема.
Угол между прямыми в пространстве Углом между двумя пересекающимися прямыми в пространстве называется наименьший из углов, образованных лучами этих прямых.
Угол в пространстве Углом в пространстве называется фигура, образованная двумя лучами с общей вершиной и одной из частей плоскости, ограниченной этими.
РАССТОЯНИЕ ОТ ТОЧКИ ДО ПЛОСКОСТИ В ПРОСТРАНСТВЕ Расстоянием от точки до плоскости в пространстве называется длина перпендикуляра, опущенного из данной.
В кубе A…D 1 найдите угол между прямыми AC и BD 1. Ответ. 90 о. Куб 1.
Угол между прямыми в пространстве Углом между двумя пересекающимися прямыми в пространстве называется наименьший из углов, образованных лучами этих прямых.
Транксрипт:

РАССТОЯНИЕ МЕЖДУ ПРЯМЫМИ В ПРОСТРАНСТВЕ Расстоянием между двумя скрещивающимися прямыми в пространстве называется длина общего перпендикуляра, проведенного к этим прямым. Если одна из двух скрещивающихся прямых лежит в плоскости, а другая – параллельна этой плоскости, то расстояние между данными прямыми равно расстоянию между прямой и плоскостью. Если две скрещивающиеся прямые лежат в параллельных плоскостях, то расстояние между этими прямыми равно расстоянию между параллельными плоскостями.

В единичном кубе A…D 1 найдите расстояние между прямыми AA 1 и BC. Ответ: 1. Куб 1

В единичном кубе A…D 1 найдите расстояние между прямыми AA 1 и CD. Ответ: 1. Куб 2

В единичном кубе A…D 1 найдите расстояние между прямыми AA 1 и B 1 C 1. Ответ: 1. Куб 3

В единичном кубе A…D 1 найдите расстояние между прямыми AA 1 и C 1 D 1. Ответ: 1. Куб 4

В единичном кубе A…D 1 найдите расстояние между прямыми AA 1 и BC 1. Ответ: 1. Куб 5

В единичном кубе A…D 1 найдите расстояние между прямыми AA 1 и B 1 C. Ответ: 1. Куб 6

В единичном кубе A…D 1 найдите расстояние между прямыми AA 1 и CD 1. Ответ: 1. Куб 7

В единичном кубе A…D 1 найдите расстояние между прямыми AA 1 и DC 1. Ответ: 1. Куб 8

В единичном кубе A…D 1 найдите расстояние между прямыми AA 1 и CC 1. Ответ: Куб 9

В единичном кубе A…D 1 найдите расстояние между прямыми AA 1 и BD. Ответ: Решение. Пусть O – середина BD. Искомым расстоянием является длина отрезка AO. Она равна Куб 10

В единичном кубе A…D 1 найдите расстояние между прямыми AA 1 и B 1 D 1. Ответ: Куб 11

В единичном кубе A…D 1 найдите расстояние между прямыми AA 1 и BD 1. Ответ: Решение. Пусть P, Q – середины AA 1, BD 1. Искомым расстоянием является длина отрезка PQ. Она равна Куб 12

В единичном кубе A…D 1 найдите расстояние между прямыми AA 1 и BD 1. Ответ: Куб 13

В единичном кубе A…D 1 найдите расстояние прямыми AB 1 и CD 1. Ответ: 1. Куб 14

В единичном кубе A…D 1 найдите расстояние между прямыми AB 1 и BC 1. Ответ: Решение. Искомое расстояние равно расстоянию между параллельными плоскостями AB 1 D 1 и BDC 1. Диагональ A 1 C перпендикулярна этим плоскостям и делится в точках пересечения на три равные части. Следовательно, искомое расстояние равно длине отрезка EF и равно Куб 15

В единичном кубе A…D 1 найдите расстояние между прямыми AB 1 и A 1 C 1. Ответ: Решение аналогично предыдущему. Куб 16

В единичном кубе A…D 1 найдите расстояние между прямыми AB 1 и BD. Ответ: Решение аналогично предыдущему. Куб 17

В единичном кубе A…D 1 найдите расстояние прямыми AB 1 и BD 1. Ответ: Решение. Диагональ BD 1 перпендикулярна плоскости равностороннего треугольника ACB 1 и пересекает его в центре P вписанной в него окружности. Искомое расстояние равно радиусу OP этой окружности. OP = Куб 18

В единичном тетраэдре ABCD найдите расстояние между прямыми AD и BC. Ответ: Решение. Искомое расстояние равно длине отрезка EF, где E, F – середины ребер AD, BC. В треугольнике ADF AD = 1, AF = DF = Следовательно, EF = Пирамида 1

В правильной пирамиде SABCD, все ребра которой равны 1, найдите расстояние между прямыми AB и CD. Ответ: 1. Пирамида 2

В правильной пирамиде SABCD, все ребра которой равны 1, найдите расстояние между прямыми SA и BD. Ответ: Решение. Искомое расстояние равно высоте OH треугольника SAO, где O – середина BD. В прямоугольном треугольнике SAO имеем: SA = 1, AO = SO = Следовательно, OH = Пирамида 3

В правильной пирамиде SABCD, все ребра которой равны 1, найдите расстояние между прямыми SA и BC. Ответ: Решение. Плоскость SAD параллельна прямой BC. Следовательно, искомое расстояние равно расстоянию между прямой BC и плоскостью SAD. Оно равно высоте EH треугольника SEF, где E, F – середины ребер BC, AD. В треугольнике SEF имеем: EF = 1, SE = SF = Высота SO равна Следовательно, EH = Пирамида 4

В правильной 6-ой пирамиде SABCDEF, ребра основания которой равны 1, найдите расстояние между прямыми AB и DE. Ответ: Пирамида 5

В правильной 6-ой пирамиде SABCDEF, боковые ребра которой равны 2, а ребра основания – 1, найдите расстояние между прямыми SA и BC. Ответ: Решение: Продолжим ребра BC и AF до пересечения в точке G. Общим перпендикуляром к SA и BC будет высота AH треугольника ABG. Она равна Пирамида 6

В правильной 6-ой пирамиде SABCDEF, боковые ребра которой равны 2, а ребра основания – 1, найдите расстояние между прямыми SA и BF. Ответ: Решение: Искомым расстоянием является высота GH треугольника SAG, где G – точка пересечения BF и AD. В треугольнике SAG имеем: SA = 2, AG = 0,5, высота SO равна Отсюда находим GH = Пирамида 7

В правильной 6-ой пирамиде SABCDEF, боковые ребра которой равны 2, а ребра основания – 1, найдите расстояние между прямыми SA и CE. Ответ: Решение: Искомым расстоянием является высота GH треугольника SAG, где G – точка пересечения CE и AD. В треугольнике SAG имеем: SA = 2, AG =, высота SO равна Отсюда находим GH = Пирамида 8

В правильной 6-ой пирамиде SABCDEF, боковые ребра которой равны 2, а ребра основания – 1, найдите расстояние между прямыми SA и BD. Ответ: Решение: Прямая BD параллельна плоскости SAE. Искомое расстояние равно расстоянию между прямой BD и этой плоскостью и равно высоте PH треугольника SPQ. В этом треугольнике высота SO равна, PQ = 1, SP = SQ = Отсюда находим PH = Пирамида 9

В правильной 6-ой пирамиде SABCDEF, боковые ребра которой равны 2, а ребра основания – 1, найдите расстояние между прямыми SA и BG, где G – середина ребра SC. Пирамида 10 Ответ: Решение: Через точку G проведем прямую, параллельную SA. Обозначим Q точку ее пересечения с прямой AC. Искомое расстояние равно высоте QH прямоугольного треугольника ASQ, в котором AS = 2, AQ =, SQ =. Отсюда находим QH =

В правильной треугольной призме ABCA 1 B 1 C 1, все ребра которой равны 1, найдите расстояние между прямыми: BC и B 1 C 1. Ответ: 1. Призма 1

В правильной треугольной призме ABCA 1 B 1 C 1, все ребра которой равны 1, найдите расстояние между прямыми: AA 1 и BC. Ответ: Призма 2

В правильной треугольной призме ABCA 1 B 1 C 1, все ребра которой равны 1, найдите расстояние между прямыми: AA 1 и BC 1. Ответ: Призма 3

В правильной треугольной призме ABCA 1 B 1 C 1, все ребра которой равны 1, найдите расстояние между прямыми: AB и A 1 C 1. Ответ: 1. Призма 4

В правильной треугольной призме ABCA 1 B 1 C 1, все ребра которой равны 1, найдите расстояние между прямыми: AB и A 1 C. Решение: Искомое расстояние равно расстоянию между прямой AB и плоскостью A 1 B 1 C. Обозначим D и D 1 середины ребер AB и A 1 B 1. В прямоугольном треугольнике CDD 1 из вершины D проведем высоту DE. Она и будет искомым расстоянием. Имеем, DD 1 = 1, CD =, CD 1 =. Следовательно, DE = Ответ: Призма 5

В правильной треугольной призме ABCA 1 B 1 C 1, все ребра которой равны 1, найдите расстояние между прямыми: AB 1 и BC 1. Призма 6 Решение: Достроим призму до 4-х угольной призмы. Искомое расстояние будет равно расстоянию между параллельными плоскостями AB 1 D 1 и BDC 1. Оно равно высоте OH прямоугольного треугольника AOO 1, в котором Эта высота равна Ответ.

В правильной 6-й призме A…F 1, ребра которой равны 1, найдите расстояние между прямыми: AB и A 1 B 1. Ответ: 1. Призма 7

В правильной 6-й призме A…F 1, ребра которой равны 1, найдите расстояние между прямыми: AB и B 1 C 1. Ответ: 1. Призма 8

В правильной 6-й призме A…F 1, ребра которой равны 1, найдите расстояние между прямыми: AB и C 1 D 1. Ответ: 1. Призма 9

В правильной 6-й призме A…F 1, ребра которой равны 1, найдите расстояние между прямыми: AB и DE. Ответ:. Призма 10

В правильной 6-й призме A…F 1, ребра которой равны 1, найдите расстояние между прямыми: AB и D 1 E 1. Ответ: 2. Призма 11

В правильной 6-й призме A…F 1, ребра которой равны 1, найдите расстояние между прямыми: AA 1 и CC 1. Ответ:. Призма 12

В правильной 6-й призме A…F 1, ребра которой равны 1, найдите расстояние между прямыми: AA 1 и DD 1. Ответ: 2. Призма 13

В правильной 6-й призме A…F 1, ребра которой равны 1, найдите расстояние между прямыми: AA 1 и B 1 C 1. Ответ:. Решение: Продолжим стороны B 1 C 1 и A 1 F 1 до пересечения в точке G. Треугольник A 1 B 1 G равносторонний. Его высота A 1 H является искомым общим перпендикуляром. Его длина равна. Призма 14

В правильной 6-й призме A…F 1, ребра которой равны 1, найдите расстояние между прямыми: AA 1 и C 1 D 1. Ответ:. Решение: Искомым общим перпендикуляром является отрезок A 1 C 1. Его длина равна. Призма 15

В правильной 6-й призме A…F 1, ребра которой равны 1, найдите расстояние между прямыми: AA 1 и BC 1. Ответ:. Решение: Искомым расстоянием является расстояние между параллельными плоскостями ADD 1 и BCC 1. Оно равно. Призма 16

В правильной 6-й призме A…F 1, ребра которой равны 1, найдите расстояние между прямыми: AA 1 и CD 1. Ответ:. Решение: Искомым общим перпендикуляром является отрезок AC. Его длина равна. Призма 17

В правильной 6-й призме A…F 1, ребра которой равны 1, найдите расстояние между прямыми: AA 1 и DE 1. Ответ:. Решение: Искомым общим перпендикуляром является отрезок A 1 E 1. Его длина равна. Призма 18

В правильной 6-й призме A…F 1, ребра которой равны 1, найдите расстояние между прямыми: AA 1 и BD 1. Решение: Искомым общим перпендикуляром является отрезок AB. Его длина равна 1. Ответ: 1. Призма 19

В правильной 6-й призме A…F 1, ребра которой равны 1, найдите расстояние между прямыми: AA 1 и CE 1. Ответ:. Решение: Искомым расстоянием является расстояние между прямой AA 1 и плоскостью CEE 1. Оно равно. Призма 20

В правильной 6-й призме A…F 1, ребра которой равны 1, найдите расстояние между прямыми: AA 1 и BE 1. Ответ:. Решение: Искомым расстоянием является расстояние между прямой AA 1 и плоскостью BEE 1. Оно равно. Призма 21

В правильной 6-й призме A…F 1, ребра которой равны 1, найдите расстояние между прямыми: AA 1 и CF 1. Ответ:. Решение: Искомым расстоянием является расстояние между прямой AA 1 и плоскостью CFF 1. Оно равно. Призма 22

В правильной 6-й призме A…F 1, ребра которой равны 1, найдите угол между прямыми: AB 1 и DE 1. Ответ:. Решение: Искомым расстоянием является расстояние между параллельными плоскостями ABB 1 и DEE 1. Расстояние между ними равно. Призма 23

В правильной 6-й призме A…F 1, ребра которой равны 1, найдите угол между прямыми: AB 1 и CF 1. Ответ: Решение: Искомым расстоянием является расстояние между прямой AB 1 и плоскостью CFF 1. Оно равно. Призма 24

В правильной 6-й призме A…F 1, ребра которой равны 1, найдите расстояние между прямыми: AB 1 и BC 1. Решение: Пусть O, O 1 –центры граней призмы. Плоскости AB 1 O 1 и BC 1 O параллельны. Плоскость ACC 1 A 1 перпендикулярна этим плоскостям. Искомое расстояние d равно расстоянию между прямыми AG 1 и GC 1. В параллелограмме AGC 1 G 1 имеем AG = ; AG 1 =. Высота, проведенная к стороне AA 1 равна 1. Следовательно, d =. Ответ: Призма 25

В правильной 6-й призме A…F 1, ребра которой равны 1, найдите расстояние между прямыми: AB 1 и BD 1. Решение: Рассмотрим плоскость A 1 B 1 HG, перпендикулярную BD 1. Ортогональная проекция на эту плоскость переводит прямую BD 1 в точку H, а прямую AB 1 – в прямую GB 1. Следовательно искомое расстояние d равно расстоянию от точки H до прямой GB 1. В прямоугольном треугольнике GHB 1 имеем GH = 1; B 1 H =.Следовательно, d =. Ответ: Призма 26

В правильной 6-й призме A…F 1, ребра которой равны 1, найдите расстояние между прямыми: AB 1 и BE 1. Решение: Рассмотрим плоскость A 1 BDE 1, перпендикулярную AB 1. Ортогональная проекция на эту плоскость переводит прямую AB 1 в точку G, а прямую BE 1 оставляет на месте. Следовательно искомое расстояние d равно расстоянию GH от точки G до прямой BE 1. В прямоугольном треугольнике A 1 BE 1 имеем A 1 B = ; A 1 E 1 =. Следовательно, d =. Ответ: Призма 27