Определение Две точки А и А 1 называются симметричными относительно прямой а, если эта прямая проходит через середину отрезка АА 1 и перпендикулярна к.

Презентация:



Advertisements
Похожие презентации
Симметрия 8 класс. Симметричность точек относительно прямой Определение Две точки А и А 1 называются симметричными относительно прямой а, если эта прямая.
Advertisements

Презентацию выполнили Ученицы 11 класса Панфилова Е. Шевырёва К.
Выполнила работу ученица 8 класса МОБУ СОШ 4 пгт Прогресс Нестеренко Анастасия Преподаватель: Ермишко Ольга Константинова.
Две точки A и А 1 называются симметричными относительно прямой a, если эта прямая проходит через середину отрезка АА 1 и перпендикулярна нему а А А1А1.
Симметричность точек относительно прямой Симметричность точек относительно прямой Симметричность точек относительно прямой Симметричность точек относительно.
ОСЕВАЯ И ЦЕНТРАЛЬНАЯ СИММЕТРИИ Работа выполнена учителем МОАУ СОШ с УИОП 48 Шамовой Л.Н.
a A1A1 A Фигура называется симметричной относительно прямой a, если для каждой точки фигуры симметричная ей точка относительно прямой a также принадлежит.
Выполнила: Давыдова Кристина.. Симметрия бывает. 1. Центральная 2. Осевая 3. Симметрия в пространстве(зеркальная)
Урок геометрии в 9 классе. Симметрия осевая центральная зеркальная.
Симметрия в пространстве. Центр симметрии Точки А и А 1 называются симметричными относительно точки О (центр симметрии), если О – середина отрезка АА.
СИММЕТРИЯ «СИММЕТРИЯ» - соразмерность, одинаковость в расположении частей чего – либо по противоположным сторонам от точки, прямой или плоскости.
Симметрия везде Симметрия - это идея с помощью которой человек веками пытался объяснить и создать порядок, красоту, совершенство. Симметрия - это идея.
Симмерия относительно прямой
Симметричность точек относительно прямой Симметричность точек относительно прямой Симметричность точек относительно прямой Симметричность точек относительно.
О СЕВАЯ И Ц ЕНТРАЛЬНАЯ СИММЕТРИЯ Выполнила: Тиханова Дарья ученица средней школы номер 5.
Центральная и осевая симметрии Презентация подготовлена учеником 8В школы 1 Логунковым.С.С. Виды симметрии.
Работу выполнил ученик 8 класса Обухов Александр..
Центральная и Осевая симметрия. Содержание: Определение точек, симметричных относительно прямой(оси симметрии) Определение точек симметричных относительно.
Осевая и центральная симметрия. A a A1A1 Ось симметрии Осевая симметрия.
Осевая симметрия Две точки А и А' называются симметричными относительно прямой с, если эта прямая проходит через середину отрезка АА' и перпендикулярна.
Транксрипт:

Определение Две точки А и А 1 называются симметричными относительно прямой а, если эта прямая проходит через середину отрезка АА 1 и перпендикулярна к нему A1A1 A a O B A A1A A1 a Т AO = OA 1

Определение Фигура называется симметричной относительно прямой, если для каждой точки фигуры симметричная ей точка также принадлежит этой фигуре Фигура называется симметричной относительно прямой, если для каждой точки фигуры симметричная ей точка также принадлежит этой фигуре А D B C M K N P ab c

Какие из данных фигур имеют ось симметрии? Сколько?

Определение Точки A и A 1 называются симметричными относительно точки О, если О – середина отрезка AA 1 Точки A и A 1 называются симметричными относительно точки О, если О – середина отрезка AA 1 A O A1A1

Определение Фигура называется симметричной относительно точки, если для каждой точки фигуры симметричная ей точка также принадлежит этой фигуре. Фигура называется симметричной относительно точки, если для каждой точки фигуры симметричная ей точка также принадлежит этой фигуре. Какие из данных фигур имеют центр симметрии? A B C D O

y x A B(4;3) C y x A A1A1 B1B1 B C C1C1 (-4;3) (4;-3)

y y x x A B C D A1A1 B1B1 C1C1 D1D1 M K K1K1 M1M1