Многогранником называется поверхность, составленная из многоугольников, ограничивающих некоторое геометрическое тело.

Презентация:



Advertisements
Похожие презентации
Двугранный угол Двугранный угол – это фигура, образованная двумя полуплоскостями с общей ограничивающей их прямой. Грань Ребро Грань Линейный угол.
Advertisements

ЗАПАДНОЕ ОКРУЖНОЕ УПРАВЛЕНИЕ ОБРАЗОВАНИЯ ДЕПАРТАМЕНТА ОБРАЗОВАНИЯ города Москвы ГБОУ СОШ «Школа здоровья» 384 Презентация на тему: Призма. Автор: Каюмов.
Выполнил: Ледов Владислав. Двугранным углом называется фигура, образованная двумя полуплоскостями с общей ограничивающей их прямой Плоскость, перпендикулярная.
Параллелепипед. Параллелепи́пед Параллелепи́пед (от греч. παράλλος параллельный и греч. επιπεδον плоскость) призма, основанием которой служит параллелограмм,
Многогранником называется поверхность, составленная из многоугольников, ограничивающих некоторое геометрическое тело.
ПОНЯТИЕ МНОГОГРАННИКА. Что такое тетраэдр? Это геометрическое тело (поверхность), составленная из четырех треугольников.
ПРИЗМА. Определение 1. Многогранник, две грани которого - одноименные многоугольники, лежащие в параллельных плоскостях, а любые два ребра, не лежащие.
Призма Многогранник, составленный из двух равных многоугольников A 1 A 2 …A n и B 1 B 2 …B n, расположенных в параллельных плоскостях, и n параллелограммов,
Призма Многогранник, составленный из двух равных многоугольников A 1 A 2 …A n и B 1 B 2 …B n, расположенных в параллельных плоскостях, и n параллелограммов,
Многогранники. Многогранником называется ограниченное тело, поверхность которого состоит из конечного числа многоугольников.
Многогранник это поверхность, составленная из многоугольников и ограничивающая некоторое геометрическое тело.
Учитель 1 категории Попова В.В. МБОУ СОШ 3. Тетраэдр Тетраэдр – поверхность, составленная из четырех треугольников. многогранником Поверхность, составленную.
Работу выполнил ученик 10 класса Какорин Владислав.
Математические диктанты. Двугранный, трёхгранный углы. Многогранник. Вопрос 1. Сколько рёбер у двугранного угла? 2. Сколько рёбер у трёхгранного угла?
План: Призмы вокруг нас Сечения призм Поверхность призм Виды призм и их особенности Общие свойства призм Элементы призм Понятие призм.
Параллелепипед Параллелепипед – поверхность, составленная из шести параллелограммов.
Многогранники. Тела вращения Подготовили Скоморох Алёна и Горбачёва Дарина, 11-А.
Геометрия Пирамида. Пирамида - многогранник, основание которого многоугольник, а остальные грани треугольники, имеющие общую вершину. По числу углов основания.
ГЕОМЕТРИЧЕСКИЕ ТЕЛА. Классификация ГЕОМЕТРИЧЕСКИЕ ТЕЛА МНОГОГРАННИКИ ТЕЛА ВРАЩЕНИЯ ПРИЗМА ПИРАМИДА ПРАВИЛЬНЫЕ МНОГОГРАННИКИ ЦИЛИНДР КОНУС ШАР.
Геометрия Виды геометрических фигур и их измерения 1. Треугольник - геометрическая фигура, состоящая из трех точек, не лежащих на одной прямой, и трех.
Транксрипт:

Многогранником называется поверхность, составленная из многоугольников, ограничивающих некоторое геометрическое тело.

Элементы Многогранника: Грань Рёбра Вершины Диагональ - Грани (многоугольники) - Рёбра (стороны граней) - Вершины - Диагонали

Свойство выпуклого многогранника: Сумма всех плоских углов в его вершине меньше 360 градусов. Многогранник называется выпуклым, если он расположен по одно сторону от плоскости каждой своей грани. Все грани выпуклого многогранника – выпуклые многоугольники.

Многогранник называется правильным, если он: 1. Выпуклый 2. Все его грани –равные правильные многоугольники 3. В каждой вершине многогранника сходиться одно и то же число рёбер

Призма (греч. prísma), многогранник, у которого две грани равные n – угольники, лежащие в параллельных плоскостях (основания призмы), а остальные n граней (боковых) параллелограммы Прямой призмой называется призма, боковое ребро которой перпендикулярно плоскости основания. Высота прямой призмы равна боковому ребру, а все боковые грани - прямоугольники Прямая призма Наклонная призма

Грани (многоугольники) Ребра (стороны граней) Вершины Диагональ призмы

Высотой (h) призмы называется перпендикуляр, опущенный из любой точки одного основания на плоскость другого основания призмы. Отрезок, концы которого - две вершины, не принадлежащие одной грани призмы, называют ее диагональю. (Отрезок A1D - диагональ призмы) A BC D F E A1 B1 C1 D1 E1F1

Правильной призмой называется прямая призма, основание которой – правильный многоугольник.

Площадь поверхности призмы (Sпр) равна сумме площадей ее боковых граней (площади боковой поверхности Sбок) и площадей двух оснований (2Sосн) - равных многоугольников: Sпр. =Sбок+2Sосн

Площадь боковой поверхности – сумма площадей боковых граней Площадь боковой поверхности прямой призмы Sбок=Pосн*h Если призма наклонная: Sбок=Pперп.сечения*a P – периметр перпендикулярного сечения a –длина ребра

Объём прямой призмы, основанием которой является прямоугольный треугольник, равен произведению площади основания на высоту. осн. V прямой призмы = S * h перп сеч. V накл призмы = S * h

Параллелепипедом называется призма, основание которой – параллелограмм. Прямоугольным параллелепипедом называется прямой параллелепипед, основание которого – прямоугольник.

Противоположные грани параллелепипеда равны параллельны Все четыре диагонали параллелепипеда пересекаются в одной точке и делятся этой точкой пополам. Сумма квадратов диагоналей параллелепипеда равна сумме квадратов всех его ребер. Боковые грани прямого параллелепипеда – прямоугольники. Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений.

Через одну из сторон основания правильной треугольной призмы проведена плоскость под углом α к основанию, отсекающая от призмы пирамиду объёма V. Определить площадь сечения. Решение

В основании прямой призмы – равнобедренная трапеция, диагонали которой перпендикулярны соответствующим боковым сторонам. Угол между диагоналями трапеции, противолежащий боковым сторонам, равен α, отрезок, соединяющий вершину верхнего основания с центром окружности, описанной около нижнего основания равен l и образует с плоскостью основания угол β. Найти объём призмы.

Решение Через середину диагонали куба, перпендикулярно к ней проведена плоскость. Определить площадь фигуры, получившейся в сечении куба этой плоскостью, если ребро куба равно a. EC=CO.

Решение Дана прямая призма, у которой основанием служит правильный треугольник. Через одну из сторон нижнего основания и противоположную вершину верхнего основания проведена плоскость. Угол между этой плоскостью и основанием равен α, а площадь сечения S. Определить V призмы.