Геометрия 10 класс Тема урока: «Задачи на построение сечений тетраэдра и параллелепипеда» учитель Белоусова Е.Н.

Презентация:



Advertisements
Похожие презентации
Тема нашего урока «Введение в геометрию». Геометрия – одна из самых древних наук, в переводе с греческого слово «геометрия» означает «землемерие» ( «гео»
Advertisements

- Что такое геометрия? Геометрия – наука о свойствах геометрических фигур «Геометрия» - (греч.) – «землемерие» - Что такое планиметрия? Планиметрия –
Предмет стереометрии. Аксиомы стереометрии. Геометрия Планиметрия (изучает свойства геометрических фигур на плоскости) Стереометрия (изучает свойства.
Кроссворд по теме: «Построение сечений тетраэдра и параллелепипеда».
ПланиметрияСтереометрия Изучает свойства геометрических фигур на плоскости Изучает свойства фигур в пространстве В переводе с греческого слово «геометрия»
Прямая и отрезок урок 1. Геометрия («землемерие») «ge»- земля «metreo»- измеряю.
ГеометрияПланиметрияСтереометрия а А а А α Куб Куб правильный многогранник, каждая грань которого представляет собой квадрат.
1 Тема урока Предмет стереометрии. Многогранники 9 класс Презентация учителя математики МБОУ «СОШ 2» Дементьевой Олеси Евгеньевны.
Основные фигуры в пространстве. Точка A Прописные латинские буквы A, B, C, D, E, K, …
В переводе с греческого слово «геометрия» означает «землемерие» «гео» - по-гречески земля, «метрео» - мерить Геометрия изучает свойства геометрических.
Разработчик: Долматова Анастасия. Школа11, руководитель: Надежда Николаевна.
СТЕРЕОМЕТРИЯ - РАЗДЕЛ ГЕОМЕТРИИ, В КОТОРОМ ИЗУЧАЮТСЯ СВОЙСТВА ФИГУР В ПРОСТРАНСТВЕ. ОСНОВНЫЕ ФИГУРЫ В ПРОСТРАНСТВЕ – ТОЧКА ПРЯМАЯ ПЛОСКОСТЬ А а ГЕОМЕТРИЧЕСКИЕ.
А В С D P K M N 12 Сколько на рисунке отрезков?
Тема: «Геометрические фигуры. Точка, прямая». Учитель: С. С. Вишнякова.
Обирина Людмила Ивановна Преподаватель КГБОУ СПО « НПК » Геометрические фигуры в пространстве Норильск, 2015.
LOGO Геометрические тела Автор : Демченко Максим 9 « В » Учитель : Лесовский Николай Николаевич.
ГЕОМЕТРИЧЕСКИЕ ТЕЛА. Классификация ГЕОМЕТРИЧЕСКИЕ ТЕЛА МНОГОГРАННИКИ ТЕЛА ВРАЩЕНИЯ ПРИЗМА ПИРАМИДА ПРАВИЛЬНЫЕ МНОГОГРАННИКИ ЦИЛИНДР КОНУС ШАР.
Математические диктанты. Двугранный, трёхгранный углы. Многогранник. Вопрос 1. Сколько рёбер у двугранного угла? 2. Сколько рёбер у трёхгранного угла?
Стереометрия – греческое слово. «Стерео» - тело, «метрио» - измерять. тетраэдр гексаэдр октаэдр икосаэдрдодекаэдр.
«Геометрические фигуры». Пурей Ольги,Пурей Татьяна, Кукеевой Салтанат. Учениц ТСШО год.
Транксрипт:

Геометрия 10 класс Тема урока: «Задачи на построение сечений тетраэдра и параллелепипеда» учитель Белоусова Е.Н.

ПланиметрияСтереометрия Изучает свойства геометрических фигур на плоскости Изучает свойства фигур в пространстве В переводе с греческого слово «геометрия» означает «землемерие» «гео» – по-гречески земля, «метрео» – мерить Слово «стереометрия» происходит от греческих слов «стереос» объемный, пространственный, «метрео» – мерить

ПланиметрияСтереометрия Наряду с этими фигурами мы будем рассматривать геометрические тела и их поверхности. Например, многогранники. Куб, параллелепипед, призма, пирамида. Тела вращения. Шар, сфера, цилиндр, конус. Основные фигуры: точка, прямая Основные фигуры: точка, прямая, плоскость Другие фигуры: отрезок, луч, треугольник, квадрат, ромб, параллелограмм, трапеция, прямоугольник, выпуклые и невыпуклые n-угольники, круг, окружность, дуга и др.

Для обозначение точек используем прописные латинские буквы A DF Для обозначение прямых используем строчные латинские буквы f d h Или обозначаем прямую двумя прописными латинскими буквами. S N

Плоскости будем обозначать греческими буквами. На рисунках плоскости обозначаются в виде параллелограммов. Плоскость как геометрическую фигуру следует представлять себе простирающейся неограниченно во все стороны.

А 1. Через любые три точки, не лежащие на одной прямой, проходит плоскость, и притом только одна. C A B А 2. Если две точки прямой лежат в плоскости, то все точки прямой лежат в этой плоскости. a A B a А 3. Если две плоскости имеют общую точку, то они имеют общую прямую, на которой лежат все общие точки этих плоскостей.

Построить сечение многогранника плоскостью – это значит указать точки пересечения секущей плоскости с ребрами многогранника и соединить эти точки отрезками, принадлежащими граням многогранника. Для построения сечения многогранника плоскостью нужно в плоскости каждой грани указать 2 точки, принадлежащие сечению, соединить их прямой и найти точки пересечения этой прямой с ребрами многогранника.

K L M A B C D

A B M D C

M N C A B D

A B M

K L M X N A B C D

K L M N A B C D

K L M A B C D A1A1 B1B1 C1C1 D1D1

M R P N A B C D A1A1 B1B1 C1C1 D1D1

C D A1A1 B1B1 A B D1D1 C1C1

R P M

P R M

P R M

K L M

R P M