Модели со стохастическими регрессорами. Ранее мы предполагали, что COV(x i,u i )=0 На практике это не всегда справедливо. Причины: 1. В моделях временных.

Презентация:



Advertisements
Похожие презентации
Лекция 17 Модели в виде системы одновременных уравнений: Косвенный метод наименьших квадратов Двухшаговый метод наименьших квадратов.
Advertisements

Линейная модель парной регрессии и корреляции. 2 Корреляция – это статистическая зависимость между случайными величинами, не имеющими строго функционального.
Уравнение множественной регрессии y t = a 0 +a 1 x 1t +a 2 x 2t +a 3 x 3t +…+a k x kt +U t (8.1) Наилучшая линейная процедура получения оценок параметров.
Модели в виде систем одновременных уравнений. Оценка параметров структурной формы модели Предполагаем, что модель идентифицируема. Для иллюстрации этого.
Лекция 7 Уравнение множественной регрессии Теорема Гаусса-Маркова Автор: Костюнин Владимир Ильич, доцент кафедры: «Математическое моделирование экономических.
Метод наименьших квадратов УиА 15/2 Айтуар А.. В математической статистике методы получения наилучшего приближения к исходным данным в виде аппроксимирующей.
Лекция 2 Часть I: Многомерное нормальное распределение, его свойства; условные распределения Часть II: Парная линейная регрессия, основные положения.
Метод наименьших квадратов В математической статистике методы получения наилучшего приближения к исходным данным в виде аппроксимирующей функции получили.
Последствия ошибок в спецификации моделей Замещающие переменные.
Методы оценивания параметров систем эконометрических уравнений.
Лекция 10 Временные ряды в эконометрических исследованиях.
ДИНАМИЧЕСКИЕ ЭКОНОМЕТРИЧЕСКИЕ МОДЕЛИ. Опр. Эконометрическая модель является динамической, если в данный момент времени она учитывает значения входящих.
МОДЕЛИ АДАПТИВНЫХ ОЖИДАНИЙ модель вида (1) где фактическое значение результативного признака; ожидаемое значение факторного признака.
Свойства Коэффициентов Множественной Регрессии Оценки b j – случайные величины. При выполнении определенных условий (4-х условий Гаусса-Маркова): E(b j.
ВОПРОСЫ Решение каких проблем включает эконометрическое исследование. Укажите этапы эконометрического исследования. Что представляет собой простая регрессия.
Автокорреляция. Временные ряды Зависимость наблюдений во времени Зависимость ошибок во времени Ковариационная матрица Авторегрессионный процесс первого.
Лекция 8 Регрессионный анализ временных рядов. Временные ряды Проблема для составления выборки – автокорреляция данных Нарушено условие о независимости.
Лекция 1 Введение.. Опр. эконометрика это наука, которая дает количественное выражение взаимосвязей экономических явлений и процессов.
ОМНК – обобщенный метод наименьших квадратов (метод Эйткена) Применяется к эконометрической модели, которой свойственна гетероскедастичность.
Лекция 12 Прогнозирование с помощью моделей Проверка адекватности модели.
Транксрипт:

Модели со стохастическими регрессорами

Ранее мы предполагали, что COV(x i,u i )=0 На практике это не всегда справедливо. Причины: 1. В моделях временных рядов, регрессоры являются функциями времени, что приводит к их корреляции со случайными возмущениями 2. Регрессоры измеряются с ошибками т.е являются случайными величинами 3. Использование лаговых переменных

Модели со стохастическими регрессорами Возможны три ситуации: 1. В уравнениях модели отсутствует корреляция между регрессорами и случайным возмущением (COV(x i,u i )=0 (оценки несмещенные и эффективные) 2. Регрессоры не коррелируют со случайными возмущениями в текущих наблюдениях, но коррелируют со случайными возмущениями в предыдущих наблюдениях: COV(x i,u i )=0, CОV(x i,u i-1 )0 (Оценки смещенные на небольших выборках и состоятельные на выборках большого объема) 3. Регрессоры коррелируют со случайными возмущениями в текущих уравнениях наблюдений: СOV(x i,u i )0 (Оценки смещенные и несостоятельные)

Модели со стохастическими регрессорами Рассмотрим модель вида: Система уравнений наблюдений для модели (1.1) (1.1) (1.2) Лаговая переменная y t-1 коррелирует со случайным возмущением в предыдущих наблюдениях Модель (1.1) частный случай авторегрессионных моделей

Модели с распределенными лагами 2. Модели с конечным числом лагов (2.1) Решается методом замены переменных Вводятся новые переменные: z 0t =x t, z 1t =x t-1,…,z kt =x t-k В новых переменных получается обычное уравнение множественной регрессии Его оценка и анализ производится с помощью МНК

Модели с распределенными лагами 3. Модели с бесконечным числом лагов В общем случае они имеют вид: (3.1) Предпосылка: параметры b i при лаговых значениях регрессоров убывают в геометрической прогрессии: b k =b 0 λ k, k=0,1,…, 0

Модели с распределенными лагами Метод оценки модели (3.2) – метод переход к модели с конечным лагом: 1.Задают набор значений параметра λ, например, (0.1, 0.001, ) 2. Для каждого λ рассчитывается значение переменной Модель (3.1) принимает вид: (3.2) Значение максимального лага «р» подбирается из условия

3. Методом наименьших квадратов оценивается модель: Для каждого λ получают значения оценок a 0 и b o Из набора значений параметра λ выбирается то, при котором коэффициент детерминации R 2 имеет максимальное значение 4. Найденное значение λ и соответствующие ему значения параметров a 0 и b 0 используются в модели (3.2) Модели с распределенными лагами

Модели частичной корректировки В экономической практике часто приходится моделировать не фактические значения эндогенной переменной, а ее ожидаемое или целевое значение Например, ожидаемый доход от ценных бумаг, инвестиций, ожидаемый уровень дивидендов и т.п.) Пусть y t – фактическое значение эндогенной переменной y* t – ожидаемое значение эндогенной переменной x t – экзогенная переменная Необходимо построить модель: (4.1)

Особенность: отсутствие данных по переменной y* t Делается предположение, что фактическое приращение эндогенной переменной пропорционально разности между ее желаемым уровнем и реальным значением в прошлом периоде: (4.2) Выражение (4.2) можно переписать в виде: y t – средневзвешенное желаемого уровня эндогенной переменной и фактическим ее значением в предыдущем периоде (4.3) Модели частичной корректировки

Подставив (4.1) в (4.3) получим выражение: (4.4) Оценив параметры модели (4.4), получим оценки всех необходимых параметров: λ, а 0 и а 1 Однако модель (4.4) имеет стохастический регрессор y t-1, что приводит к «частичному» нарушению четвертой предпосылки теоремы Гаусса-Маркова Поэтому оценку модели (4.4) необходимо проводить по выборке большого объема. Модели частичной корректировки

Построение модели Лизера Год Доход Y t Сбере жения S t Год Доход Y t Сбере жения S t 19468,80, ,50, ,40, ,70, ,00, ,60, ,60, ,71, ,00, ,11, ,90, ,81, ,70, ,91, ,50, ,21, ,30, ,02, ,82,40 Модель корректировки уровня сбережений Лизера

Построение модели Лизера Спецификация модели где: S* t –ожидаемый уровень сбережений в текущем году Используется предположение: (4.5) (4.6) Подставляя (4.5) в (4.6) после преобразования получим (4.7)

Построение модели Лизера Вводя новые значения параметров: (4.8) спецификация (4.7) принимает вид: (4.9) Оценка спецификации (4.9) по имеющимся данным Возвращаемся к исходным параметрам согласно (4.8)

Модели адаптивных ожиданий Случай «противоположный» рассмотренному Например. Известно, что дивиденды от ценной бумаги 30% в год от ее стоимости. Но не известно, какова будет ее стоимость в следующем периоде времени Инвестор ориентируется на некоторое ожидаемое значение в будущем Спецификация модели имеет вид: (5.1) где: X* t-1 – ожидаемое значение регрессора в следующем периоде времени

Модели адаптивных ожиданий Т.к. X* t-1 величина не наблюдаемая, ее заменяют на ту переменную, которая поддается наблюдениям В данном случае – это текущее значение регрессора Предполагается, что ожидаемое значение регрессора есть взвешенное среднее между текущими реальным и ожидаемым значениям регрессора: Другими словами, предполагается: (5.2)

Модели адаптивных ожиданий Подставив (5.2) в (5.1) получаем спецификацию: (5.3) Далее записывается (5.13) для момента времени (t-1), умножается на(1-ρ) и вычитается из него (5.3) (5.4) Оценивается спецификация (5.4) и производится обратный переход к исходным параметрам модели