В правильной четырехугольной призме АВСDА 1 В 1 С 1 D 1 стороны основания равны 2, а боковые ребра 5. На ребре АА 1 отмечена точка Е, так что АЕ : ЕА.

Презентация:



Advertisements
Похожие презентации
Решение заданий С 2 координатно- векторным методом.
Advertisements

Подготовка к ЕГЭ. В единичном кубе A...D1 найдите расстояние от точки A до прямой BD1. Ответ:
Угол между прямыми в пространстве Углом между двумя пересекающимися прямыми в пространстве называется наименьший из углов, образованных лучами этих прямых.
Расстояние от точки до прямой Расстояние от точки до прямой, не содержащей эту точку, есть длина отрезка перпендикуляра, проведенного из этой точки на.
Решение задач C2 Выполнила ученица 11 класса Э МОУ лицей Эсауленко Анастасия 2011 год.
2 В правильной шестиугольной пирамиде SABCDEF, стороны основания которой, равны 1, а боковые ребра равны 2, найдите расстояние от точки C до прямой SF.
(0;2;2) х yz В правильной четырехугольной призме АВСDA 1 B 1 C 1 D 1 стороны основания равны 2, а боковые ребра равны 5. На ребре АА 1 отмечена точка Е.
Угол в пространстве Углом в пространстве называется фигура, образованная двумя лучами с общей вершиной и одной из частей плоскости, ограниченной этими.
Найдите объем многогранника, вершинами которого являются вершины A, B, C, D, A 1 единичного куба ABCDA 1 B 1 C 1 D 1. Ответ: Искомым многогранником является.
Метод координат в задачах С2 Стереометрия. Угол между прямыми - направляющий вектор прямой а - направляющий вектор прямой b - угол между прямыми.
1. Изобразите сечение единичного куба A…D 1, проходящее через вершины A, B, C 1. Найдите его площадь. Ответ..
Угол между двумя плоскостями Угол между двумя пересекающимися плоскостями, заданными уравнениями a 1 x + b 1 y + c 1 z + d 1 = 0, a 2 x + b 2 y + c 2 z.
Решение задач C2 и C4 Выполнила ученица 11 класса Э МОУ лицей Эсауленко Анастасия 2011 год.
Решение заданий С2 по материалам ЕГЭ 2012 года (Часть 4 ) МБОУ СОШ 5 – «Школа здоровья и развития» г. Радужный Учитель математики Е.Ю. Семёнова.
Пирамида Пирамида. Построение изображения правильной треугольной пирамиды.
Пирамида Многогранник, составленный из многоугольника A 1 A 2 …A n и n треугольников называется n-угольной пирамидой.
Готовимся к ЕГЭ. Задача С 2. Расстояние от точки до прямой. МБОУ г. Мурманска гимназия 3 Шахова Татьяна Александровна.
A С1С1С1С1 A1A1A1A1 B1B1B1B1 2 B 2 Чтобы найти высоту A 1 K, выразим два раза площадь равнобедренного треугольника BA 1 C 1. K 55С 2H В правильной треугольной.
Задачи на нахождение площади сечения многогранника Подготовка к решению задач ЕГЭ Автор: Ингинен Ольга Вячеславовна, учитель математики, МОУ «СОШ 6» г.
Изобразите сечение единичного куба A…D 1, проходящее через вершины A, B, C 1. Найдите его площадь. Ответ..
Транксрипт:

В правильной четырехугольной призме АВСDА 1 В 1 С 1 D 1 стороны основания равны 2, а боковые ребра 5. На ребре АА 1 отмечена точка Е, так что АЕ : ЕА 1 =3:2. Найти угол между плоскостями (АВС) и (ВЕD 1 ).

В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1. Найти тангенс угла между плоскостями (SAC) и (SBC).

В правильной шестиугольной призме ABCDEFA 1 B 1 C 1 D 1 E 1 F 1 все ребра равны 1. Найти косинус угла между плоскостями (AFE 1 ), (BCD 1 ).

В правильной шестиугольной пирамиде SABCDEF, стороны основания равны 1, боковые ребра 2. Найти косинус угла между плоскостями (SAF) и (SBC).

В тетраэдре ABCD, все ребра которого равны 1. Найти косинус угла между плоскостями (АВС) и (АСD).

В правильной треугольной призме ABCA 1 B 1 C 1, все ребра которой равны 1. Найти косинус угла между плоскостями (ВС A 1 ) и (А B 1 C 1 ).