Прямоугольные треугольники Треугольник называется прямоугольным, если … у него есть прямой угол. Гипотенузой называется сторона прямоугольного треугольника…

Презентация:



Advertisements
Похожие презентации
Прямоугольные треугольники Треугольник называется прямоугольным, если … у него есть прямой угол. Гипотенузой называется сторона прямоугольного треугольника…
Advertisements

Перпендикуляр Перпендикуляром, опущенным из точки A на прямую а, называется отрезок AB, соединяющий точку A с точкой B прямой a, перпендикулярный прямой.
Докажите, что если в треугольниках ABC и A 1 B 1 C 1 AB = A 1 B 1, AC = A 1 C 1, медиана СM равна медиане С 1 M 1, то треугольники ABC и A 1 B 1 C 1 равны.
Равнобедренные треугольники Треугольник называется равнобедренным, если у него … две стороны равны (рис. 1). Эти равные стороны называются …боковыми сторонами,
Равнобедренные треугольники Треугольник называется равнобедренным, если у него … две стороны равны (рис. 1). Эти равные стороны называются …боковыми сторонами,
Равнобедренные треугольники Треугольник называется равнобедренным, если у него … две стороны равны (рис. 1). Эти равные стороны называются …боковыми сторонами,
Равнобедренные треугольники Треугольник называется равнобедренным, если у него две стороны равны (рис. 1). Эти равные стороны называются боковыми сторонами,
Внешний угол произвольного треугольника больше каждого внутреннего, не смежного с ним. Доказательство. Пусть АВС – произвольный треугольник. Рассмотрим,
Равнобедренные треугольники Треугольник называется равнобедренным, если у него … две стороны равны (рис. 1). Эти равные стороны называются …боковыми сторонами,
Второй признак подобия треугольников Теорема. (Второй признак подобия.) Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника.
Прямоугольник. Прямоугольник Чем прямоугольник отличается от параллелограмма?
Средняя линия треугольника Урок 1. I. Устная работа 1) Может ли треугольник быть невыпуклым? 2) Где расположена точка пересечения высот прямоугольного.
Теорема 1 Внешний угол произвольного треугольника больше каждого внутреннего, не смежного с ним. Доказательство. Пусть АВС – произвольный треугольник.
Признак равнобедренного треугольника Теорема. (Признак равнобедренного треугольника.) Если в треуголь­нике два угла равны, то он равнобедренный. Доказательство.
Площадь треугольника Теорема 1. Площадь треугольника равна половине произведения его стороны на высоту, проведенную к этой стороне. Следствие. Площадь.
ABC Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники.
Признаки равенства прямоугольных треугольников. Вопрос 1 Какой треугольник называется прямоугольным? Ответ: Если один из углов треугольника прямой, то.
Подобие треугольников Два треугольника называются подобными, если углы одного соответственно равны углам другого и соответствующие стороны пропорциональны.
Математика Дополнительные признаки равенства треугольников Серова Наталья Александровна, Мурзина Наталья Викторовна, учителя математики, информатики и.
ПРИЗНАКИ РАВЕНСТВА ПРЯМОУГОЛЬНЫХ ТРЕУГОЛЬНИКОВ Геометрия - 7.
Транксрипт:

Прямоугольные треугольники Треугольник называется прямоугольным, если … у него есть прямой угол. Гипотенузой называется сторона прямоугольного треугольника… противолежащая прямому углу. Остальные две стороны прямоугольного треугольника называются … катетами.

Признак 1 Если гипотенуза и катет одного прямоугольного треугольника соответственно равны гипотенузе и катету другого прямоугольного треугольника, то такие треугольники равны. Теорема. Доказательство аналогично доказательству третьего признака равенства треугольников.

Признак 2 Теорема. Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны. Доказательство: Пусть в прямоугольных треугольниках ABC и A 1 B 1 C 1 равны гипотенузы AB и A 1 B 1 и острые углы A и A 1. Предположим, что AC и A 1 C 1 не равны. На луче A 1 C 1 от его начала A 1 отложим отрезок AC. При этом точка C перейдет в точку C, отличную от C. Треугольники ABC и A 1 B 1 C будут равны по первому признаку. Тогда угол A 1 CB 1 будет прямым, и в треугольнике B 1 CC 1 будет два прямых угла. Противоречие. Следовательно, AC должен равняться A 1 C 1 и, значит, данные треугольники равны по первому признаку.

Вопрос 1 Какой треугольник называется прямоугольным? Ответ: Прямоугольным называется треугольник, у которого есть прямой угол.

Вопрос 2 Какая сторона называется гипотенузой прямоугольного треугольника? Ответ: Гипотенузой называется сторона прямоугольного треугольника, противолежащая прямому углу.

Вопрос 3 Какие стороны называется катетами прямоугольного треугольника? Ответ: Катетами называются стороны прямоугольного треугольника, противолежащие острым углам.

Упражнение 1 Что больше, катет или гипотенуза прямоугольного треугольника? Ответ: Гипотенуза.

Упражнение 2 Может ли прямоугольный треугольник иметь стороны, равные 4, 5, 5? Ответ: Нет.

Упражнение 3 Может ли прямоугольный треугольник иметь катеты 11 см и 111 см? Ответ: Да.

Упражнение 4 Может ли прямоугольный треугольник иметь тупой угол? Ответ: Нет.

Упражнение 5 Могут ли неравные прямоугольные треугольники иметь равные катеты? Ответ: Нет.

Упражнение 6 Может ли прямоугольный треугольник быть: а) равнобедренным; б) равносторонним? Ответ: а) Да, б) нет.

Упражнение 7 Стороны прямоугольного треугольника равны 3 см, 4 см, 5 см. Чему равна гипотенуза? Ответ: 5 см.

Упражнение 6 Верно ли, что если катет и острый угол одного прямоугольного треугольника соответственно равны катету и острому другого прямоугольного треугольника, то такие треугольники равны.? Ответ: Нет.

Упражнение 7 Докажите, что высоты, проведенные к боковым сторонам равнобедренного треугольника, равны. Доказательство: Пусть ABC – равнобедренный треугольник (AC = BC), AD и BD – высоты. Прямоугольные треугольники ABD и BAE равны по гипотенузе и острому углу. Значит, AD = BE.

Упражнение 8 Докажите, что если две высоты треугольника равны, то этот треугольник – равнобедренный. Доказательство: Пусть в треугольнике ABC высоты AD и BE равны. Прямоугольные треугольники ABD и BAE равны по гипотенузе и катету. Значит, B = A и, следовательно, треугольник ABC – равнобедренный.

Упражнение 9 В треугольнике KLM проведена медиана LN. Докажите, что высоты треугольников MLN и KLN, проведенные соответственно из вершин M и K, равны. Доказательство: Прямоугольные треугольники KNP и MNQ равны по гипотенузе и острому углу. Следовательно, KP = MQ.

Упражнение 10 В прямоугольном треугольнике ABC ( С = 90 о ) проведена медиана BD. Какой из углов больше ABD или CBD? Решение: Продолжим BD и отложим DE = BD. Треугольники BCD и AED равны. Следовательно, углы CBD и E равны. Так как BC < AB, то AE < AB и, значит, ABD < E = CBD.

Упражнение 11 В прямоугольном треугольнике ABC ( С = 90 о ) проведена биссектриса BE. Какой из отрезков больше AE или CE? Решение: Отложим на стороне BA отрезок BF = BC. Треугольники BCE и BFE равны. Следовательно, CE = EF. Так как EF < AE, то CE < AE.

Упражнение 12 По данному рисунку укажите способ нахождения расстояния между недоступными точками A и B.