Линейчатые поверхности Образование поверхностей. Линейчатой поверхностью называется поверхность, образованная перемещением прямолинейной образующей по.

Презентация:



Advertisements
Похожие презентации
Определение и задание на чертеже Определение Поверхность Поверхность – совокупность всех последовательных положений движущейся линии (образующей) в пространстве.
Advertisements

Выполнила: студентка группы 2Г31 Смолякова Алена Дмитриевна Проверила: доцент кафедры высшей математики Тарбокова Т.В.
Пересечение многогранника с плоскостью. В общем случае линия пересечения – плоская ломаная линия Сечение многогранника плоскостью.
Пересечение многогранной поверхности с криволинейной Способ секущих плоскостей.
Пересечение многогранника с плоскостью. В общем случае линия пересечения – плоская ломаная линия Сечение многогранника плоскостью.
Позиционные задачи. При решении позиционных задач выясняют взаимное расположение (позицию) двух и большего числа геометрических фигур 3) отсутствие принадлежности:
Лекция 7 Пересечение поверхностей. Способ вспомогательных секущих плоскостей. Пересечение поверхностей. Способ вспомогательных секущих плоскостей.
Лекция 10 Пересечение поверхности плоскостью. При пересечении поверхности или какой-либо геометрической фигуры плоскостью получается фигура, которая называется.
Поверхность как объект пространства Понятие «поверхность» в начертательной геометрии связано с представлением о кинематическом способе ее образования:
Лекция 7 Поверхности. Классификация, образование, задание на чертеже. Каркас. Определитель поверхности.
Пересечение многогранных поверхностей. Две многогранные поверхности в общем случае пересекаются по пространственной замкнутой ломаной линии Проницание.
Лекция 12 Взаимные пересечения поверхностей. Пересечение поверхностей Из линейной алгебры (многомерной геометрии) хорошо известно, что в расширенном евклидовом.
Лекция 8 Винтовые поверхности. Многогранники. Винтовые поверхности. В технике часто встречаются винтовые поверхности, образованные при винтовом движении.
Лекция 11 Развертки поверхностей. Развёртка поверхности Разверткой поверхности называется плоская фигура, полученная при совмещении поверхности геометрического.
Поверхности второго порядка. К невырожденным поверхностям второго порядка относятся: Эллипсоид Эллипсоид Эллиптический параболоид Эллиптический параболоид.
Поверхности второго порядка. Эллипсоид.. Цилиндрические поверхности Цилиндрической поверхностью называется поверхность, составленная из всех прямых, пересекающих.
Простая поверхность Простая поверхность Никольская Анна ГОУ школа 548 с углубленным изучением английского языка. Проект представляет: Руководитель проекта:
Фрагменты видеолекций по начертательной геометрии Авторы: Дударь Е.С. Столбова И.Д. Пермский государственный технический университет Кафедра дизайна, графики.
«Проецирование геометрических тел на три плоскости проекции. Проекции точек, лежащих на поверхности геометрических тел»
Взаимное пересечение поверхностей Вид линии пересечения зависит от сочетаний пересекающихся поверхностей ДВЕ ПОВЕРХНОСТИ ВРАЩЕНИЯ (ОБЩИЙ СЛУЧАЙ) ЛИНИЯ.
Транксрипт:

Линейчатые поверхности Образование поверхностей

Линейчатой поверхностью называется поверхность, образованная перемещением прямолинейной образующей по одной или более направляющим

Цилиндрическая поверхность m (m; S ) S // Цилиндрическая поверхность образуется движением прямой (образующей) по некоторой кривой m параллельно самой себе или имеющей постоянное направление S

i m ( i, m; i ) Коническая поверхность Коническая поверхность – образуется движением прямой линии (о бразующей) по некоторой кривой линии m и имеющей неподвижную точку S S

Торсовая поверхность m m – ребро возврата ( m) Торсовая поверхность образуется движением прямой, касающейся во всех своих положениях некоторой пространственной направляющей кривой m, называемой ребром возврата

Однополостный гиперболоид

Многогранные поверхности – это поверхности, образованные частями (отсеками) пересекающихся плоскостей Многогранником называется тело, ограниченное многогранной поверхностью, состоящей из плоских многоугольников Отсеки плоскостей называются гранями, а линии их пересечения – ребрами Точки пересечения ребер называются вершинами

S m S m Пирамидальная поверхность S m Пирамида m – замкнутый контур Если направляющая m ломаная, а все образующие пересекаются в одной точке, такая поверхность называется пирамидальной Поверхность с замкнутой ломаной направляющей (m), общей точкой пересечения образующих ребер и граней называется пирамидой

Принадлежность точки поверхности

S А1А1 С1С1 В1В1 S2S2 X 1,2 S1S1 А2А2 С2С2 В2В2 Задача Построить недостающую проекцию точки N N2N2 N1N1

m S Призматическая поверхность m S Призма Если все образующие поверхности параллельны – поверхность называется призматической Поверхность с замкнутой ломаной направляющей (m) (основанием) и взаимно параллельными ребрами – призма

Проецирующая призма А В С С1С1 В1В1 А1А1 k2k2 k1k1 f1f1 g1g1 g2g2 f2f2 X 1,2 Если ребра призмы перпендикулярны основанию, гранник называется проецирующей призмой

Поверхности Каталана

0 m1m1 n1n1 1 1 n m n1n1 m1m1 2 m2m2 n2n2 Линейчатые поверхности с двумя направляющими (поверхности Каталана) П 2 (m,n,; П 2 ); Цилиндроид

Поверхность с плоскостью параллелизма и двумя скрещивающимися направляющими называется гиперболическим параболоидом, или косой плоскостью Гипар

m2m2 n2n2 n1n1 m1m1 Задача Построить каркас и очерк гипара, заданного определителем (m, n, П 2 ) I21I2 2I22I2 3I23I2 4I24I2 5I25I2 6I26I2 7I27I2 8I28I I21I2 2I22I2 3I23I2 4I24I2 5I25I2 6I26I2 7I27I2 8I28I2 // парабола ll 1 n m ; 1 1 ll П 2 Определить видимость очерковых линий

Винтовой поверхностью называют поверхность, образованную винтовым движением образующей Винтовым движением называют движение, при котором каждая точка А образующей вращается вокруг неподвижной оси i и одновременно перемещается поступательно вдоль этой оси Винтовая поверхность

n2n2 n1n1 гелиса А1А1 В1В1 ί1ί1 ί2ί2 Задача Построить каркас и очерк прямого геликоида А2А2 В2В (Прямой винтовой коноид) (n, i)

Задача А2А2 А1А1 В1В1 В2В2 i2i2 i1i1 Построить очерк однополостного гиперболоида вращения Однополостный гиперболоид вращения