Пересечение многогранника с плоскостью. В общем случае линия пересечения – плоская ломаная линия Сечение многогранника плоскостью.

Презентация:



Advertisements
Похожие презентации
Пересечение многогранника с плоскостью. В общем случае линия пересечения – плоская ломаная линия Сечение многогранника плоскостью.
Advertisements

Позиционные задачи. При решении позиционных задач выясняют взаимное расположение (позицию) двух и большего числа геометрических фигур 3) отсутствие принадлежности:
Лекция 10 Пересечение поверхности плоскостью. При пересечении поверхности или какой-либо геометрической фигуры плоскостью получается фигура, которая называется.
Пересечение многогранной поверхности с криволинейной Способ секущих плоскостей.
Лекция 7 Пересечение поверхностей. Способ вспомогательных секущих плоскостей. Пересечение поверхностей. Способ вспомогательных секущих плоскостей.
Пересечение многогранных поверхностей. Две многогранные поверхности в общем случае пересекаются по пространственной замкнутой ломаной линии Проницание.
Линейчатые поверхности Образование поверхностей. Линейчатой поверхностью называется поверхность, образованная перемещением прямолинейной образующей по.
Лекция 6 Сечение поверхности плоскостью. Алгоритм решения задачи 1. Объекты ( и ) рассекают вспомогательной секущей плоскостью Г 2. Находят линию пересечения.
Лекция 11 Развертки поверхностей. Развёртка поверхности Разверткой поверхности называется плоская фигура, полученная при совмещении поверхности геометрического.
Построение сечений многогранников. Решение задач..
ВЗАИМНОЕ ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТИ С ПЛОСКОСТЬЮ. Замкнутая фигура, образованная линией пересечения поверхности тела секущей плоскостью, называется сечением.
Пересечение поверхностей вращения способом секущих плоскостей.
Взаимное пересечение поверхностей Вид линии пересечения зависит от сочетаний пересекающихся поверхностей ДВЕ ПОВЕРХНОСТИ ВРАЩЕНИЯ (ОБЩИЙ СЛУЧАЙ) ЛИНИЯ.
Лекция 12 Взаимные пересечения поверхностей. Пересечение поверхностей Из линейной алгебры (многомерной геометрии) хорошо известно, что в расширенном евклидовом.
Построение сечения многогранников Выполнила: Рябкова Ю.И.
Построение сечений многогранниковмногогранников. Практикум Геометрические понятия ПлоскостьПлоскость – грань ПрямаяПрямая – ребро ТочкаТочка – вершина.
Определение и задание на чертеже Определение Поверхность Поверхность – совокупность всех последовательных положений движущейся линии (образующей) в пространстве.
Построение сечений параллелепипеда. При этом необходимо учитывать следующее: 1. Соединять можно только две точки, лежащие в плоскости одной грани. Для.
Задачи на построение сечений многогранников Разработка для самостоятельной работы учащихся 10 класса Ширинская МОУ СОШ 4 Лебедева Т.Н г. A B C D.
Основное понятие геометрии – место пересечения прямой и плоскости, не имеющее измерения. (точка) Геометрическая фигура, состоящая из шести квадратных граней.
Транксрипт:

Пересечение многогранника с плоскостью

В общем случае линия пересечения – плоская ломаная линия Сечение многогранника плоскостью

по линии пересечения граней многогранника с секущей плоскостью (задача на построение линии пересечения двух плоскостей) способ ребер способ граней по точкам пересечения ребер многогранника с секущей плоскостью (задача на построение точки пересечения прямой с плоскостью)

Секущая плоскость – частного положения – точки искомой линии пересечения строятся по точкам пересечения выродившейся в прямую проекции секущей плоскости с одноименными проекциями ребер (образующих или других линий) данной поверхности

А1А1 С1С1 В1В1 S2S2 X 1,2 S1S1 А2А2 С2С2 В2В2 S К1К1 N1N1 К2К2 (N 2 ) Пересечение прямой с поверхностью

Алгоритм 1. Через прямую проводят вспомогательную плоскость-посредник 2. Находят линию пересечения поверхности с плоскостью – k 3. Отмечают точки пересечения прямой с линией k, точки 1 и 2 Количество точек пересечения прямой с поверхностью определяет порядок последней

2 m2m2 m1m1 Задача S2S2 S1S1 A2A2 D2D2 C2C2 C1C1 D1D1 A1A M1M1 N1N1 M 2 N 2 Построить точки пересечения прямой и плоскости с пирамидой