Курс лекций по теоретической механике Кинематика Бондаренко А.Н. Москва - 2007 Электронный учебный курс написан на основе лекций, читавшихся автором для.

Презентация:



Advertisements
Похожие презентации
Курс лекций по теоретической механике Кинематика Бондаренко А.Н. Москва Электронный учебный курс написан на основе лекций, читавшихся автором для.
Advertisements

Курс лекций по теоретической механике Кинематика Бондаренко А.Н. Москва Электронный учебный курс написан на основе лекций, читавшихся автором для.
Курс лекций по теоретической механике Статика Бондаренко А.Н. Москва Электронный учебный курс написан на основе лекций, читавшихся автором для студентов,
Курс лекций по теоретической механике Статика Бондаренко А.Н. Москва Электронный учебный курс написан на основе лекций, читавшихся автором для студентов,
Курс лекций по теоретической механике Статика Бондаренко А.Н. Москва Электронный учебный курс написан на основе лекций, читавшихся автором для студентов,
Курс лекций по теоретической механике Динамика (II часть) Бондаренко А.Н. Москва Электронный учебный курс написан на основе лекций, читавшихся автором.
Курс лекций по теоретической механике Динамика (I часть) Бондаренко А.Н. Москва Электронный учебный курс написан на основе лекций, читавшихся автором.
Курс лекций по теоретической механике Кинематика Бондаренко А.Н. Москва Электронный учебный курс написан на основе лекций, читавшихся автором для.
Курс лекций по теоретической механике Кинематика Бондаренко А.Н. Москва Электронный учебный курс написан на основе лекций, читавшихся автором для.
Курс лекций по теоретической механике Динамика (II часть) Бондаренко А.Н. Москва Электронный учебный курс написан на основе лекций, читавшихся автором.
Лекция К2. ПРОСТЕЙШИЕ ВИДЫ ДВИЖЕНИЯ ТВЕРДОГО ТЕЛА.
Курс лекций по теоретической механике Кинематика Бондаренко А.Н. Москва Электронный учебный курс написан на основе лекций, читавшихся автором для.
Курс лекций по теоретической механике Динамика (I часть) Бондаренко А.Н. Москва Электронный учебный курс написан на основе лекций, читавшихся автором.
Курс лекций по теоретической механике Статика Бондаренко А.Н. Москва Электронный учебный курс написан на основе лекций, читавшихся автором для студентов,
Курс лекций по теоретической механике Динамика (II часть) Бондаренко А.Н. Москва Электронный учебный курс написан на основе лекций, читавшихся автором.
Курс лекций по теоретической механике Динамика (II часть) Бондаренко А.Н. Москва Электронный учебный курс написан на основе лекций, читавшихся автором.
Курс лекций по теоретической механике Динамика (I часть) Бондаренко А.Н. Москва Электронный учебный курс написан на основе лекций, читавшихся автором.
Курс лекций по теоретической механике Динамика (I часть) Бондаренко А.Н. Москва Электронный учебный курс написан на основе лекций, читавшихся автором.
Выполнила Ахметова И. Проверил. Непрерывную кривую, которую описывает точка в своем движении, называют траекторией точки.
Курс лекций по теоретической механике Динамика (I часть) Бондаренко А.Н. Москва Электронный учебный курс написан на основе лекций, читавшихся автором.
Транксрипт:

Курс лекций по теоретической механике Кинематика Бондаренко А.Н. Москва Электронный учебный курс написан на основе лекций, читавшихся автором для студентов, обучавшихся по специальностям СЖД, ПГС и СДМ в НИИЖТе и МИИТе ( гг.). Учебный материал соответствует календарным планам в объеме трех семестров. Для полной реализации анимационных эффектов при презентации необходимо использовать средство просмотра Power Point не ниже, чем встроенный в Microsoft Office операционной системы Windows-ХР Professional. Запуск презентации – F5, навигация – Enter, навигационные клавиши, щелчок мыши, кнопки. Завершение – Esc. Замечания и предложения можно послать по Московский государственный университет путей сообщения (МИИТ) Кафедра теоретической механики Научно-технический центр транспортных технологий

Лекция 3. Вращательное движение. Угловая скорость и угловое ускорение. Равнопеременное вращение. Скорость и ускорение точки тела при вращательном движении. Скорость и ускорение точки вращающегося тела как векторные произведения. Формула Эйлера. Преобразование вращений. Лекция 3

Вращательное движение твердого тела – движение при котором все его точки движутся в плоскостях, перпендикулярных некоторой неподвижной прямой, и описывают окружности с центрами, лежащими на этой прямой, называемой осью вращения. Задание вращательное движения – движение задается законом изменения двугранного угла φ (угла поворота), образованного неподвижной плоскостью P, проходящей через ось вращения, и плоскостью Q, жестко связанной с телом: P Q - уравнение вращательного движения Угловая скорость – величина, характеризующая быстроту изменения угла поворота. - средняя угловая скорость в интервале времени t, Устремим t 0 и перейдем к пределу: - истинная угловая скорость в момент времени t Если d φ/d t > 0, то вращение происходит в сторону увеличения угла поворота, если d φ/d t < 0, то вращение происходит в сторону уменьшения угла поворота. Угловое ускорение – величина, характеризующая быстроту изменения угловой скорости. - среднее угловое ускорение в интервале времени t, Устремим t 0 и перейдем к пределу: - истинное угловое ускорение в момент времени t Если d 2 φ/d t 2 и d φ/d t одного знака, то скорость увеличивается по модулю и вращение называется ускоренным (дуговые стрелки угловой скорости и углового ускорения направлены в одну сторону), если d 2 φ/d t 2 и d φ/d t разного знака, то скорость уменьшается по модулю и вращение называется замедленным (дуговые стрелки угловой скорости и углового ускорения направлены в противоположные стороны). Угловая скорость изображается дуговой стрелкой в сторону вращения. ω Угловое ускорение изображается дуговой стрелкой в сторону увеличения угла поворота при. ε Равномерное вращение – угловая скорость не изменяется по величине. Равнопеременное вращение – угловое ускорение не изменяется по величине. 6

Лекция 3 ( продолжение 3.2 ) Скорость точки при вращательном движении твердого тела – траектория точки известна (окружность радиуса R – расстояние точки до оси вращения), можно применить формулу для определения скорости точки при естественном задании движения: O + - s φ R Дуговая координата связана с радиусом окружности: Тогда проекция скорости на касательную к окружности: Поскольку далее работают с модулем угловой скорости после изображения ее в виде дуговой стрелки расчетной формулой является выражение для модуля скорости: и вектор скорости направляют перпендикулярно радиусу в сторону дуговой стрелки угловой скорости. ω Как следует из формулы скорость точки пропорциональна расстоянию ее до оси вращения (радиусу вращения). Ускорение точки при вращательном движении твердого тела – траектория точки известна, можно применить формулы для определения ускорений точки при естественном задании движения: Тогда проекции ускорения на касательную к окружности и нормаль: Поскольку далее работают с модулем углового ускорения после изображения его в виде дуговой стрелки расчетной формулой является выражение для касательного ускорения: и вектор этого ускорения, называемого вращательным ускорением, направляют перпендикулярно радиусу в сторону дуговой стрелки углового ускорения. ε Нормальное ускорение теперь называется осестремительным ускорением, его направляют по радиусу к оси вращения независимо от направления дуговой стрелки угловой скорости, не говоря уж о направлении дуговой стрелки углового ускорения. Как следует из формул оба ускорения точки пропорциональны расстоянию ее до оси вращения (радиусу вращения). Полное ускорение точки, как и ранее, есть векторная сумма этих ускорений: Угол между направлением полного ускорения и радиусом от величины радиуса не зависит и равен: Скорость и ускорения точки при вращательном движении как векторные произведения. Представим угловую скорость и угловое ускорения как векторы, направленные по оси вращения в ту сторону, откуда дуговые стрелки этих величин указывают вращение против часовой стрелки. ω ε ω ε z z Положительное направление оси z можно задать с помощью единичного вектора k, тогда векторы угловой скорости и углового ускорения можно представить как: где z, z – проекции соответствующих векторов на ось z. 7

Лекция 3 ( продолжение 3.3 ) Скорость точки при вращательном движении как векторное произведение – определяется выражением, которое описывает и величину, и направление скорости. ω Величина (модуль) этого векторного произведения: R R Таким образом: Направление вектора рассматриваемого векторного произведения: по определению векторного произведения – перпендикулярно плоскости, проведенной через умножаемые вектора, направлен в ту сторону, откуда поворот первого вектора ко второму на наименьший угол кажется происходящим против часовой стрелки; по правилу правой руки – при совмещении большого пальца с первым вектором, остальных – со вторым вектором, поворот большого пальца перпендикулярно ладони указывает на направление вектора векторного произведения. Таким образом, действительно векторное произведение угловой скорости и радиус-вектора полностью определяет величину и направление скорости точки при вращательном движении в соответствии с ранее полученными результатами. Вращательное ускорение точки как векторное произведение – определяется выражением, которое описывает и величину, и направление вращательного ускорения. Величина (модуль) этого векторного произведения: Таким образом: R Направление вектора рассматриваемого векторного произведения можно установить по определению векторного произведения или по правилу правой руки. Таким образом, действительно векторное произведение углового ускорения и радиус-вектора полностью определяет величину и направление вращательного ускорения точки в соответствии с ранее полученными результатами. ε R Осестремительное ускорение точки как векторное произведение – определяется выражением, которое описывает и величину, и направление осестремительного ускорения. Величина (модуль) этого векторного произведения: 1, т.к. вектор скорости точки перпендикулярен плоскости, в которой лежит вектор угловой скорости. ω R Таким образом: Направление вектора рассматриваемого векторного произведения можно установить по определению векторного произведения или по правилу правой руки. Таким образом, действительно векторное произведение угловой скорости и вектора скорости точки полностью определяет величину и направление осестремительного ускорения точки в соответствии с ранее полученными результатами. Это векторное произведение может быть также записано в виде: 1 2 8

Лекция 3 ( продолжение 3.4 ) Формулы Эйлера – с помощью раскрытия векторного произведения для скорости точки можно получить общие аналитические выражения для этой скорости через координаты рассматриваемой точки при произвольной расположении оси вращения в пространстве: ω R x y z x y z Отсюда получаются аналитические формулы для проекций скоростей точки: Преобразования вращательных движений – изменение величины и направление угловых скоростей вращающихся звеньев в различных передаточных механизмах: Фрикционное зацепление: R1R1 R2R2 ω1ω1 ω2ω2 Скорости входящих в контакт точек колес при отсутствии проскальзывания равны: Отсюда: Передаточное число, характеризующее изменение скорости вращения при передаче вращения от одного звена к другому – отношение угловой скорости ведущего колеса к угловой скорости ведомого: Зубчатое зацепление – число зубьев каждого из колес прямо пропорционально радиусу колеса. Окружные скорости входящих в контакт точек поверхностей зубьев по-прежнему равны. Полученные соотношения остаются справедливыми, в том числе и для случая внутреннего зацепления. R1R1 R2R2 ω1ω1 ω2ω2 Радиусы делительных окружностей связаны с шагом зубьев соотношениями: С использованием чисел зубьев каждого из колес имеем: Ременная и цепная передачи –. Окружные скорости входящих в контакт с ремнем или цепью точек поверхностей обоих колес или зубьев этих колес по-прежнему равны (ремень или цепь не растягиваются и не сжимаются). Полученные соотношения остаются справедливыми. R1R1 R2R2 ω1ω1 ω2ω2 2 v 9