ТАБЛИЦЫ ИСТИННОСТИ. ТАБЛИЦА ИСТИННОСТИ – ЭТО таблица, устанавливающая соответствие между всеми возможными наборами логических переменных, входящих в логическую.

Презентация:



Advertisements
Похожие презентации
Таблица истинности – это таблица, устанавливающая соответствие между всеми возможными наборами логических переменных, входящих в логическую функцию и.
Advertisements

Каждое составное высказывание можно выразить в виде формулы, в которую входят логические переменные, обозначающие высказывания, и знаки логических операций,
Сложное высказывание Высказывания бывают простые и сложные. Простым называется высказывание, которое не содержит в себе других высказываний. Если несколько.
Составление таблиц истинности по логической формуле Приоритет логических операций ИНВЕРСИЯ КОНЪЮНКЦИЯ ДИЗЪЮНКЦИЯ Порядок действий можно указать с помощью.
Занятие 2 (часть 1) Логические формулы. Законы алгебры логики.
Математическая логика Математическая логика Единственное средство улучшить наши умозаключения состоит в том, чтобы сделать их столь же наглядными, как.
ЛОГИЧЕСКИЕ ВЫРАЖЕНИЯ И ТАБЛИЦЫ ИСТИННОСТИ ЛОГИЧЕСКИЕ ВЫРАЖЕНИЯ Каждое составное высказывание можно выразить в виде формулы (логического выражения), в.
П ОСТРОЕНИЕ ТАБЛИЦ ИСТИННОСТИ ДЛЯ СЛОЖНЫХ ВЫСКАЗЫВАНИЙ. Подготовила учитель информатики высшей категории Габриэль Татьяна Васильевна.
Логические функции. Любое логическое выражение можно рассматривать как логическую функцию F(X 1, Х 2,... Х n ) аргументами являются логические переменные.
Математическая логика. Пон я тие высказываний Понятие высказываний Под высказыванием обычно понимают всякое повествовательное предложение, утверждающее.
АЛГЕБРА ЛОГИКИ Часть 2. Истинность выражения Возьмем составное высказывание Пусть А=0, В=1 Тогда.
Алгебра логики. Логика Логика – это наука о формах и законах человеческой мысли, о законах доказательных рассуждений, изучающая методы доказательств и.
Логика Наука, изучающая законы и формы мышления.
Законы алгебры высказываний. 1.Основные законы алгебры логики 2. Преобразование логических формул с помощью законов алгебры логики 3. Тождественные высказывания.
Алгебра логики. Алгебра логики это математический аппарат, с помощью которого записывают, вычисляют, упрощают и преобразовывают логические высказывания.
Высказывания. 1. Понятие высказывания 2. Операции с высказываниями 3. Таблица истинности 4. Булевы функции План:
Основы логики Основы логики Автор: Соколов Кирилл Дата: г. Учитель: Ковалева Ю.В.
Таблица истинности. Для каждого логического выражения (логического высказывания) можно построить таблицу истинности, которая определяет его истинность.
Шинкаренко Евгений Александрович МОУ Гимназия 2 г.Черняховск Калининградской области.
Математическая логика и теория алгоритмов Доцент каф. АОИ, к.т.н. Перемитина Татьяна Олеговна Алгебра высказываний.
Транксрипт:

ТАБЛИЦЫ ИСТИННОСТИ

ТАБЛИЦА ИСТИННОСТИ – ЭТО таблица, устанавливающая соответствие между всеми возможными наборами логических переменных, входящих в логическую функцию и значениями функции.

ТАБЛИЦЫ ИСТИННОСТИ ПРИМЕНЯЮТСЯ ДЛЯ: вычисления истинности сложных высказываний; установления эквивалентности высказываний; определения тавтологий.

Пример 1. Установить истинность высказывания ABC

С помощью таблиц истинности можно установить эквивалентность двух или нескольких высказываний. Высказывания называются эквивалентными, если соответствующие значения каждого из них совпадают в таблице истинности. Если значения сложных высказываний совпадают на всех наборах значений входящих в них переменных, то такие высказывания называют равносильными, или тождественными, или эквивалентными.

Пример 2. Утверждается, что высказывание А+В С эквивалентно высказыванию (А+В) (А+С) ABC В СА+В С А+ВА+С (А+В) (А+С)

Различие между эквивалентностью и эквиваленцией. Эквиваленция является логической операцией, позволяющей по двум заданным высказываниям А и В построить новое АВ. Эквивалентность же является отношением между двумя составными высказываниями, состоящим в том, что их значения истинности всегда одни и те же.

Пример3. Установите является ли высказывание (X Y) (X Y) тавтологией XY XY (XY) ДА

КЛАССИФИКАЦИЯ ВЫСКАЗЫВАНИЙ: ТАВТОЛОГИИ (ТОЖДЕСТВЕННО ИСТИННЫЕ); ТОЖДЕСТВЕННО ЛОЖНЫЕ; ЭКВИВАЛЕНТНЫЕ.

ЕСЛИ ВЫСКАЗЫВАНИЕ ИСТИННО ПРИ ВСЕХ ЗНАЧЕНИЯХ ВХОДЯЩИХ В НЕГО ПЕРЕМЕННЫХ, ТО ТАКОЕ ВЫСКАЗЫВАНИЕ НАЗЫВАЕТСЯ ТОЖДЕСТВЕННО ИСТИННЫМ ИЛИ ТАВТОЛОГИЕЙ (ОБОЗНАЧАЕТСЯ КОНСТАНТОЙ 1)

ЕСЛИ ВЫСКАЗЫВАНИЕ ЛОЖНО ПРИ ВСЕХ ЗНАЧЕНИЯХ ВХОДЯЩИХ В НЕГО ПЕРЕМЕННЫХ, ТО ТАКОЕ ВЫСКАЗЫВАНИЕ НАЗЫВАЕТСЯ ТОЖДЕСТВЕННО ЛОЖНЫМ (ОБОЗНАЧАЕТСЯ КОНСТАНТОЙ 0)

ЕСЛИ ЗНАЧЕНИЯ СЛОЖНЫХ ВЫСКАЗЫВАНИЙ СОВПАДАЮТ НА ВСЕХ НАБОРАХ ЗНАЧЕНИЙ ВХОДЯЩИХ В НИХ ПЕРЕМЕННЫХ, ТО ТАКИЕ ВЫСКАЗЫВАНИЯ НАЗЫВАЮТ РАВНОСИЛЬНЫМИ, ИЛИ ТОЖДЕСТВЕННЫМИ, ИЛИ ЭКВИВАЛЕНТНЫМИ.

Д.з.: