ТЕМА: «Медианы, биссектрисы, высоты треугольника. Равнобедренный треугольник.»

Презентация:



Advertisements
Похожие презентации
По сторонам: 1.Разносторонний 2.Равносторонний 3.Равнобедренный По углам: 1.Остроугольный 2.Прямоугольный 3.Тупоугольный.
Advertisements

Отрезок, соединяющий вершину треугольника с серединой противоположной стороны, называется Отрезок, соединяющий вершину треугольника с серединой противоположной.
1 Треугольник, периметр которого равен 24 см, делится высотой на два треугольника, периметры которых равны 12 см и 20 см. Найти высоту треугольника.
Треугольник Равносторонний Разносторонний Равнобедренный Прямоугольный Тупоугольный остроугольный Полупрямая Биссектриса Перпендикуляр Отрезок угол.
ПЛОЩАДЬ ФИГУР ТРЕУГОЛЬНИКИ. ТРЕУГОЛЬНИК – ГЕОМЕТРИЧЕСКАЯ ФИГУРА, КОТОРАЯ СОСТОИТ ИЗ ТРЕХ ТОЧЕК, НЕ ЛЕЖАЩИХ НА ОДНОЙ ПРЯМОЙ, И ТРЕХ ОТРЕЗКОВ СОЕДИНЯЮЩИХ.
Медиана, биссектриса, высота треугольника. Теорема: Из точки, не лежащей на прямой, можно провести перпендикуляр к этой прямой и причем только один.
Три точки соединенные тремя отрезками образуют фигуру, называемую треугольником.
Медианы, биссектрисы и высоты треугольника. МЕДИАНА Отрезок, соединяющий вершину треугольника с серединой противоположной стороны, называется медианой.
Медиана, биссектриса, высота треугольника. Медиана – это отрезок, соединяющий вершину треугольника с серединой противоположной стороны.
Туляева А.Л.. Равнобедренный Равносторонний Разносторонний.
Треугольники. Основные понятия темы: Треугольник и его элементы. Равные треугольники. Виды треугольников. Медиана. Биссектриса. Высота.
Медиана, биссектриса и высота. Равнобедренный треугольник Цели урока: повторить понятия медианы, биссектрисы и высоты треугольника, определение равнобедренного.
Подготовил Белов Олег Медианы, биссектрисы и высоты треугольника.
Добрый день!. Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.
Медианы, биссектрисы, высоты треугольника Признаки равенства треугольников Тема урока:
N K Теорема о биссектрисе угла. Каждая точка биссектрисы неразвёрнутого угла равноудалена от его сторон. Обратная теорема. Точка, лежащая внутри угла.
Виды треугольников (по сторонам) А В С М Р К Н О Т.
МЕДИАНЫ, БИССЕКТРИСЫ И ВЫСОТЫ ТРЕУГОЛЬНИКОВ Егорова Н.В., учитель математики МАОУ «Гимназия 57»
Дорогу осилит идущий, геометрию думающий.. , 3 a Разгадайте ребус. МЕЧ ДИВАН А - медиана.
Работу выполнила: ученица 7 класса МБОУ Сарасинской СОШ Алтайского района Дьяченко Татьяна Учитель: Мордовских Надежда Васильевна МБОУ Сарасинская СОШ.
Транксрипт:

ТЕМА: «Медианы, биссектрисы, высоты треугольника. Равнобедренный треугольник.»

ЦЕЛИ УРОКА: 1. Повторить и закрепить понятия: Медианы треугольника;Медианы треугольника; Биссектрисы треугольника;Биссектрисы треугольника; Высоты треугольника;Высоты треугольника; Равнобедренный треугольник;Равнобедренный треугольник; Свойства равнобедренного треугольника;Свойства равнобедренного треугольника; 2.Использовать полученные знания для написания теста

К С А В P N M

1.Равносторонний треугольник является равнобедренным;

2.Биссектриса равнобедренного треугольника проведенная из вершины угла при основании является высотой треугольника;

1.Равносторонний треугольник является равнобедренным; 2.Биссектриса равнобедренного треугольника проведенная из вершины угла при основании является высотой треугольника; 3.Острые углы равнобедренного прямоугольного треугольника равны 45º;

1.Равносторонний треугольник является равнобедренным; 2.Биссектриса равнобедренного треугольника проведенная из вершины угла при основании является высотой треугольника; 3.Острые углы равнобедренного прямоугольного треугольника равны 45º; 4.Все точки серединного перпендикуляра равно удалены от концов отрезка;

1.Равносторонний треугольник является равнобедренным; 2.Биссектриса равнобедренного треугольника проведенная из вершины угла при основании является высотой треугольника; 3.Острые углы равнобедренного прямоугольного треугольника равны 45º; 4.Все точки серединного перпендикуляра равно удалены от концов отрезка; 5.В равнобедренном треугольнике все углы равны 60º;

1.Равносторонний треугольник является равнобедренным; 2.Биссектриса равнобедренного треугольника проведенная из вершины угла при основании является высотой треугольника; 3.Острые углы равнобедренного прямоугольного треугольника равны 45º; 4.Все точки серединного перпендикуляра равно удалены от концов отрезка; 5.В равнобедренном треугольнике все углы равны 60º; 6.Прямая содержащая медиану, проведенная к основанию равнобедренного треугольника является серединным перпендикуляром к этому основанию;

1.Равносторонний треугольник является равнобедренным; 2.Биссектриса равнобедренного треугольника проведенная из вершины угла при основании является высотой треугольника; 3.Острые углы равнобедренного прямоугольного треугольника равны 45º; 4.Все точки серединного перпендикуляра равно удалены от концов отрезка; 5.В равнобедренном треугольнике все углы равны 60º; 6.Прямая содержащая медиану, проведенная к основанию равнобедренного треугольника является серединным перпендикуляром к этому основанию;

В прямоугольнике АВСD на стороне AB лежит точка К. В прямоугольнике АВСD на стороне AB лежит точка К. F точка пересечения отрезков АС и DК. FС=DК. Чему равна градусная мера угла СDF, если угол КFA=70º

ДОМАШНЕЕ ЗАДАНИЕ ДОМАШНЕЕ ЗАДАНИЕ Повторить : Гл. 3 § 2 стр. 76 Повторить : Гл. 3 § 2 стр. 76 вопросы 7-15 стр. 74 вопросы 7-15 стр. 74 Творческое задание: разгадать кроссворд

Спасибо за урок!