Расчет ЭДС, наведенных в параллельных и сходящихся линиях, с учетом проводимости земли Мисриханов М.Ш., Рубцова Н.Б., Токарский А.Ю. (МЭС Центра) (ГУ НИИ.

Презентация:



Advertisements
Похожие презентации
Расчет ЭДС, наведенных в параллельных и сходящихся линиях, с учетом проводимости земли Мисриханов М.Ш., Рубцова Н.Б., Токарский А.Ю. (МЭС Центра) (ГУ НИИ.
Advertisements

Наведенные напряжения в параллельных и сходящихся воздушных линий электропередачи с учетом проводимости земли Мисриханов М.Ш., Токарский А.Ю. (Филиал ОАО.
Элементарный вибратор Лекция 13. Элементарный вибратор Прямолинейный провод длиной l, по которому протекает переменный ток, может излучать электромагнитные.
Электрофизические свойства проводниковых материалов Автор Останин Б.П. Эл. физ. свойства проводниковых материалов. Слайд 1. Всего 12 Конец слайда.
Волновое уравнение длинной линии и его решение (1) 1.
ЕГЭ ФИЗИКА. Ученик собрал электрическую цепь, состоящую из батарейки, реостата, ключа, амперметра и вольтметра. После этого он измерил напряжение.
3.1 Магнитное поле Опыт показывает, что вокруг постоянных магнитов и токов возникает силовое поле, которое обнаруживает себя по воздействию на другие постоянные.
ЗАКОН ОМА В КОМПЛЕКСНОЙ ФОРМЕ Закон Ома в комплексной форме основан на символическом методе и справедлив для линейных цепей с гармоническими напряжениями.
Энергия и мощность электромагнитного поля. Электромагнитные волны. Лекция 5.
Билет 1(вопрос 3) Задача на формулу силы Лоренца F л – сила Лоренца (Н) q – заряд (Кл) - скорость (м/с) В – магнитная индукция (Тл) α – угол между скоростью.
Повторим: силовые линии магнитного поля постоянных магнитов.
Свободные электромагнитные колебания в контуре быстро затухают и поэтому практически не используются. И наоборот, незатухающие вынужденные колебания имеют.
Сила Лоренца. Сила Ампера Осень Поле кругового тока R r b β dBdB Y.
Лекция 15 Электромагнитные измерительные преобразователи К классу электромагнитных преобразователей относят близкие им по принципу действий взаимоиндуктивные.
Электротехника и электроника Доцент Габриелян Ш.Ж.
Электромагнитные колебания 1. Свободные колебания в электрическом контуре без активного сопротивления 2. Свободные затухающие электрические колебания 3.
МАГНИТНОЕ ПОЛЕ ПОСТОЯННЫХ ТОКОВ МАГНИТНЫМ ПОЛЕМ называется один из видов электромагнитного поля, который оказывает силовое воздействие на проводник с током.
3.13 Работа, совершаемая при перемещении тока в магнитном поле 3.13 Работа, совершаемая при перемещении тока в магнитном поле Поместим в однородное магнитное.
1 ТЕМА 2. Методы расчета магнитного поля. П.1. Принцип суперпозиции магнитных полей. Магнитное поле прямого провода.П.1. Принцип суперпозиции магнитных.
Магнитный поток Графическое изображение: силовые линии Касательная к силовым линиям – вектор магнитной индукции Величина магнитного поля – количество силовых.
Транксрипт:

Расчет ЭДС, наведенных в параллельных и сходящихся линиях, с учетом проводимости земли Мисриханов М.Ш., Рубцова Н.Б., Токарский А.Ю. (МЭС Центра) (ГУ НИИ МТ РАМН) (МЭС Центра)

Параллельные линии

Расчет при наличии обратного провода и без учета проводимости земли Однопроводные линии 1 и 2 параллельны. Участок линии 2 длиной l заземлен по концам, образуя контур 2. Между прямым проводом линии 1 и контуром 2 существует взаимная индуктивность М 12. Током прямого провода линии 1 в контуре 2 наводится ЭДС Е 2.

Взаимная индуктивность между прямым проводом 1 и контуром 2 Сопротивление взаимоиндукции между прямым проводом 1 и контуром 2 ЭДС Е 2, наведенная прямым током I 1 в контуре 2

Расчет при отсутствии обратного провода с учетом проводимости земли через З З - глубина проникновения электромагнитной волны в землю, т.е. глубина, проникнув на которую, электромагнитная волна затухает в е = 2,72 раза. При отсутствии обратного провода контур 2 не ограничен снизу и h пр, а значит и Е 2. Для решения задачи используется интеграл Карсона J(r, P + jQ, где r и - параметры интеграла: при

ЭДС, наведенная током линии 1 в заземленном по концам участке линии 2 длиной l : где по Костенко В.М.: В результате разложения в ряд интеграла F 12 получены расчетные выра- жения для значений параметра r :

Если считать, что a 12 >> h 1 +h 2, то получим выражение для a 12 в зависимости от r и З : З Ом м а 12max (5) м а 12min (6) м Максимальные значения a 12max для выражения (5) и минимальные значения a 12min для выражения (6) При a 12max (5) < a 12 < a 12min (6) мертвая зона для выражений (5) и (6), где они дают очень большую погрешность!

Расчет при отсутствии обратного провода с учетом проводимости земли через h ЭКВ 1. Учет тока прямого провода линии 1 Для параметра Карсона r 0,2 применяют выражение для Z 12 : -по Костенко В.М., где из постоянной Эйлера. Из второго сомножителя в скобках: h ЭКВ - эквивалентная глубина расположения обратного провода линии 2, т.е. глубже в землю, чем на h ЭКВ магнитное поле не распространяется.

Используя выражения (2) и (3) получим уравнения для определения сопро- тивления взаимной индукции и наведенной ЭДС с применением h ЭКВ : - ЭДС, наведенная током I 1 прямого провода линии 1 в контуре линии Учет плотности тока, наведенного в земле током прямого провода линии 1

3. Учет обратного тока линии 1, протекающего в земле Протекающий в земле обратный ток I от1 линии 1 равен прямому току I 1. - напряжение между заземле- ниями в начале и конце линии 1: Элемент dI от1 обратного тока в канале сечением dS З :

Плотность обратного тока линии 1 в земле и составляющая индукции магнитного поля, создаваемая этим током: ЭДС, наводимая потоком индукции в контуре линии 2: Результирующая ЭДС, наведенная в контуре линии 2:

Сравнение методов расчета Две параллельные однопроводные линии 1 и 2 расположены на высоте h 1 = h 2 = 19 м над землей с удельным сопротивлением З = 50 Ом.м. В линии 1 протяженностью 10 км (l от = м) протекает ток I 1 = 4000 А частотой 50 Гц. Линия 2 отключена и ее участок длиной l = 1000 м заземлен по концам. Найдем ЭДС, наведенную током линии 1 на заземленном участке линии 2 при изменении расстояния а 12 между ними от 10 до м. Расчет проведем с учетом проводимости земли, выраженную через глубину проникновения З по выражениям (5) и (6), а также через эквивалентную глубину h ЭКВ по выражениям (7) - (10). Распределение в земле плотностей токов 1 и от1. l от = м, у + = -у - = м.

Изменение модулей ЭДС,,, и arg( ) при увеличении а 12 от 100 м до 2000 м

Изменение модулей ЭДС,,, и, а также аргументов и при увеличении а 12 от 10 м до 100 м

Изменение модулей ЭДС,,, и, а также аргументов и при увеличении а 12 от 1500 м до 5000 м

Векторные диаграммы ЭДС для а м, 1500 м и 5000 м Расчет ЭДС, наведенной в параллельных ВЛ, по выражениям с использованием h max более точен.

Сходящиеся линии

Расчет при отсутствии обратного провода с учетом проводимости земли через З Наличие мертвой зоны по расстоянию а 12 для уравнений (5) и (6) ограничивает их использование в расчетах ЭДС, наведенных в сходящихся линиях. Однако в некоторых работах для таких ВЛ применяются выражения, полученные из уравнения (5). Рассмотрим однопроводную линию 1 с током I 1, расположенную на высоте h 1 над землей и сходящуюся с ней под углом линию l с высотой h l, участок l 12 которой заземлен в точках l 1 и l 2.

После интегрирования получим:

Расчет при отсутствии обратного провода с учетом проводимости земли через h ЭКВ 1. Учет тока прямого провода линии 1

Элементарный магнитный поток индукции :

уравнение (12) переходит в уравнение (7) для параллельных линий.

2. Учет плотности тока, наведенного в земле током прямого провода линии 1

3. Учет обратного тока линии 1, протекающего в земле

Поскольку то, делая подстановку и беря два внутренних интеграла по и в системе координат Х ОТ Y ОТ Z ОТ, а два наружных - по и в системе координат XYZ, по- лучим:

Сравнение методов расчета Рассмотрим прямолинейную однопроводную линию 1 протяженностью 50 км с током 4 кА и сходящуюся с ней под углом = ОТ = 45 линию l, участок которой l 12 = 1 км заземлен. м, км, 10 км, Ом.м, В. Поскольку в нашем случае,,, и, то уравнения (11) - (14) примут вид:

Результирующее значение ЭДС, определяемых с использованием h ЭКВ, находится по выражению:

Изменение модулей и аргументов ЭДС при увеличении Y 1 от 10 м до 100 м

Изменение модулей и аргументов ЭДС при увеличении Y 1 от 100 м до 2000 м Расчет ЭДС, наведенной в сходящихся ВЛ, по выражениям с использованием h max более точен.

СПАСИБО ЗА ВНИМАНИЕ