Основные уравнения движения жидкостей Уравнение неразрывности потока. Дифференциальные уравнения движения идеальной и реальной жидкости (уравнение Навье.

Презентация:



Advertisements
Похожие презентации
Гидродинамика Внутренняя и внешняя гидродинамические задачи; смешанные задачи. Основные характеристики движения жидкости. Стационарные и нестационарные.
Advertisements

Гидродинамика Гидродинамика изучает законы движения жидкостей и рассматривает приложения этих законов к решению практических инженерных задач Движение.
ПРОКОФЬЕВА Тамара Валентиновна доцент, к.т.н. ФЕДОРОВА Елена Борисовна ассистент, к.т.н.
Гидродинамика. План урока: 1 Понятие о живом сечении, средней и истиной скорости, расходе. Смоченный периметр и гидравлический радиус. 2 Движение равномерное,
ГИДPОДИНАМИКА И ГИДPОДИНАМИЧЕСКИЕ ПPОЦЕССЫ Основы гидравлики, гидростатика. Силы, действующие на жидкость. Дифференциальные уравнения равновесия Эйлера.
Гидродинамическая структура потоков Гидродинамические режимы движения жидкости: ламинарный и турбулентный. Число Рейнольдса.
Лекции по гидродинамике Часть 1 Автори: Гидродинамика изучает законы движения жидкостей и рассматривает приложения этих законов к решению практических.
ГИДРОДИНАМИКА. Гидродинамика (от гидро- и динамика), раздел гидравлики, в котором изучаются движение несжимаемых жидкостей и взаимодействие их с твёрдыми.
ДИНАМИКА МАТЕРИАЛЬНОЙ СИСТЕМЫ ЛЕКЦИЯ 4: ТЕОРЕМА БЕРНУЛЛИ, ТЕОРЕМА О ВИРИАЛЕ.
Основы аэродинамики ВС 1.Основные понятия и законы аэродинамики 2.Причины возникновения подъемной силы.
Тема 9 гидродинамика. 2 способа описания движения движение частиц или малых объемов жидкости (метод Лагранжа) свойства жидкости в каждой точке пространства.
ОСНОВЫ ГИДРАВЛИКИ.. Плотность- масса единицы объема жидкости [p] = [кг/м 3 ] Удельный вес-вес единицы объема жидкости [γ] = [H/м 3 ]
ПиАПП-ГП 1 ОСНОВЫ ГИДРАВЛИКИ И ГИДРАВЛИЧЕСКИЕ ОСНОВЫ ГИДРАВЛИКИ И ГИДРАВЛИЧЕСКИЕПРОЦЕССЫ ПЛАН ЛЕКЦИИ ВВЕДЕНИЕ. 1.ОСНОВЫ ГИДРОСТАТИКИ. 2.ОСНОВЫ ГИДРОДИНАМИКИ.
1 ДИНАМИКА МАТЕРИАЛЬНОЙ СИСТЕМЫ МАТЕРИАЛЬНАЯ СИСТЕМА. ТЕОРЕМА ОБ ИЗМЕНЕНИИ КОЛИЧЕСТВА ДВИЖЕНИЯ.
С.Д.АСФЕНДИЯРОВ АТЫНДАҒЫ ҚАЗАҚ ҰЛТТЫҚ МЕДИЦИНА УНИВЕРСИТЕТІ КАЗАХСКИЙ НАЦИОНАЛЬНЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ ИМЕНИ С.Д.АСФЕНДИЯРОВА Выполнила:Пердали Айдана.
Тема 11. Элементы механики сплошной среды Архимед ( до н.э.) Б.Паскаль ( )
Тема 6. ТЕРМОДИНАМИКА ГАЗОВОГО ПОТОКА 6.1. УРАВНЕНИЕ ЭНЕРГИИ ГАЗОВОГО ПОТОКА 6.1. УРАВНЕНИЕ ЭНЕРГИИ ГАЗОВОГО ПОТОКА Процессы движения газа, происходящие.
Истечение жидкости Чекрыжов Сергей p ат Истечение жидкости В процессе истечения потенциальная энергия жидкости превращается в кинетическую энергию.
Чмых Анна 1.1 группа Мультимедиа технологии в образовании Выполнила: студентка ф-та ИИТ,3-го курса,1.1 группы Чмых Анна Вперёд.
Лекция 9. Расчет газовых течений с помощью газодинамических функций,, Рассмотрим газодинамические функции, которые используются в уравнениях количества.
Транксрипт:

Основные уравнения движения жидкостей Уравнение неразрывности потока. Дифференциальные уравнения движения идеальной и реальной жидкости (уравнение Навье - Стокса). Уравнение Бернулли для идеальных и реальных жидкостей.

Уравнение неразрывности потока При установившемся движении жидкости в каждом фиксированном сечении средняя скорость постоянна во времени, при этом – Через любое сечение протекает одинаковое количество жидкости, т.к. V=const – Уравнение неразрывности ( сплошности ) потока-

Дифференциальные уравнения движения идеальной При движении идеальной жидкости действуют силы тяжести, давления и силы инерции, возникающие при движении элементарного объема. Согласно основному принципу динамики- силы равны произведению массы элементарного параллелепипеда на ускорение:

Дифференциальные уравнения движения Эйлера для идеальной жидкости

Движение реальной жидкости При движении реальной жидкости возникают силы трения- Сумма вторых производных составляющей скорости при перемещении в 3-х мерном пространстве (вдоль оси z):

Уравнение Навье-Стокса

Уравнение Бернулли для идеальных жидкостей. Основное уравнение гидродинамики: Т.е. для всех поперечных сечений установившегося потока идеальной жидкости величина гидродинамического напора остается неизменной.

Использование уравнения Бернулли Для определения скоростей и расходов жидкости:

Закон сохранения энергии Для всех поперечных сечений установившегося потока идеальной жидкости сумма удельной энергии остается неизменной. удельная потенциальная энергия – Удельная кинетическая энергия-

Уравнение Бернулли для реальных жидкостей. При движении реальной жидкости действуют силы внутреннего трения, обусловленные вязкостью жидкости и режимом движения. Возникают силы трения о стенки трубопровода. Часть энергии тратится на преодоление местных сопротивлений:

Гидравлическое сопротивление трубопроводов и аппаратов Потери давления на трение и местные сопротивления, их расчет

Гидравлические сопротивления Сопротивления трению; Местные сопротивления

Сопротивления трения Возникают при движении реальной жидкости по всей длине трубопроводов: Коэффициент трения зависит от режима движения жидкости.

Ламинарный режим Для прямой, круглой трубы- Для трубы не круглого сечения-

Турбулентный режим Для гладких труб : При турбулентном движении жидкости λ зависит от характера движения жидкости (Re) и шероховатости стенок труб:

Обобщенное уравнения для турбулентного режима Зона гладкого трения ( ) Зона смешанного трения ( )

Зона автомодельного трения ( ) Шероховатость стенок труб -

Местные гидравлические сопротивления Возникают при любых изменениях скорости потока по величине и направлению. При расчете используют скорость потока перед мс (при расширении) или за мс (при сужении и запорной арматуре)

Оптимальный диаметр трубопроводов При определении диаметров трубопроводов нужно знать секундный расход жидкости и среднюю скорость ее движения:

Средняя скорость движения жидкости Капельные жидкости 1-3 м/с ; Газ под небольшим давлением 8-15 м/с; Газ под большим давлением м/с; Насыщенный водяной пар м/с; Перегретый водяной пар м/с