Основные уравнения движения жидкостей Уравнение неразрывности потока. Дифференциальные уравнения движения идеальной и реальной жидкости (уравнение Навье - Стокса). Уравнение Бернулли для идеальных и реальных жидкостей.
Уравнение неразрывности потока При установившемся движении жидкости в каждом фиксированном сечении средняя скорость постоянна во времени, при этом – Через любое сечение протекает одинаковое количество жидкости, т.к. V=const – Уравнение неразрывности ( сплошности ) потока-
Дифференциальные уравнения движения идеальной При движении идеальной жидкости действуют силы тяжести, давления и силы инерции, возникающие при движении элементарного объема. Согласно основному принципу динамики- силы равны произведению массы элементарного параллелепипеда на ускорение:
Дифференциальные уравнения движения Эйлера для идеальной жидкости
Движение реальной жидкости При движении реальной жидкости возникают силы трения- Сумма вторых производных составляющей скорости при перемещении в 3-х мерном пространстве (вдоль оси z):
Уравнение Навье-Стокса
Уравнение Бернулли для идеальных жидкостей. Основное уравнение гидродинамики: Т.е. для всех поперечных сечений установившегося потока идеальной жидкости величина гидродинамического напора остается неизменной.
Использование уравнения Бернулли Для определения скоростей и расходов жидкости:
Закон сохранения энергии Для всех поперечных сечений установившегося потока идеальной жидкости сумма удельной энергии остается неизменной. удельная потенциальная энергия – Удельная кинетическая энергия-
Уравнение Бернулли для реальных жидкостей. При движении реальной жидкости действуют силы внутреннего трения, обусловленные вязкостью жидкости и режимом движения. Возникают силы трения о стенки трубопровода. Часть энергии тратится на преодоление местных сопротивлений:
Гидравлическое сопротивление трубопроводов и аппаратов Потери давления на трение и местные сопротивления, их расчет
Гидравлические сопротивления Сопротивления трению; Местные сопротивления
Сопротивления трения Возникают при движении реальной жидкости по всей длине трубопроводов: Коэффициент трения зависит от режима движения жидкости.
Ламинарный режим Для прямой, круглой трубы- Для трубы не круглого сечения-
Турбулентный режим Для гладких труб : При турбулентном движении жидкости λ зависит от характера движения жидкости (Re) и шероховатости стенок труб:
Обобщенное уравнения для турбулентного режима Зона гладкого трения ( ) Зона смешанного трения ( )
Зона автомодельного трения ( ) Шероховатость стенок труб -
Местные гидравлические сопротивления Возникают при любых изменениях скорости потока по величине и направлению. При расчете используют скорость потока перед мс (при расширении) или за мс (при сужении и запорной арматуре)
Оптимальный диаметр трубопроводов При определении диаметров трубопроводов нужно знать секундный расход жидкости и среднюю скорость ее движения:
Средняя скорость движения жидкости Капельные жидкости 1-3 м/с ; Газ под небольшим давлением 8-15 м/с; Газ под большим давлением м/с; Насыщенный водяной пар м/с; Перегретый водяной пар м/с