Плясуновой Дарьи МОУ СОШ 1 10А класс Свердловская область Нижнесергинский район г. Михайловск.

Презентация:



Advertisements
Похожие презентации
Совершенные и дружественные числа. Совершенное число н н н н н аааа тттт уууу рррр аааа лллл ьььь нннн оооо ееее ч ч ч ч ииии сссс лллл оооо, равное сумме.
Advertisements

Выполнил работу ученик 7 класса Амосов Андрей Руководитель Мальцева Людмила Гавриловна Новосибирск 2012.
Выполнили : Алиновская Алина Русакова Елизавета Руководитель : Рафикова Галина Михайловна Г. Комсомольск - на - Амуре 2010 г. МОУ гимназия 9.
IV – Региональная научно-практическая конференция школьников «Шаг будущее» Секция: «Математические науки» Ленск 2013 г.
Занимательный урок математики 6 класс Дудко Наталья Алексеевна учитель математики МБОУ г. Иркутска СОШ 34 I квалификационной категории.
Дру́жественные чи́сла два различных натуральных числа, для которых сумма всех собственных делителейнатуральных числасобственных делителей первого числа́
Фигурные числа. Дружественные числа Треугольные числа.
Совершенные и дружественные числа ВЫПОЛНИЛА БОЖКО АЛИНА.
Закономерности и проблемы в мире чисел Кудренко Юлия 10 б класс.
Плясуновой Дарьи МОУ СОШ 1 10А класс Свердловская область Нижнесергинский район г. Михайловск.
Подготовили: ученики 6 класса МОУ «СОШ 28» г. Балаково Морозова Аня, Смирнова Лена, Иванова Оля.
Математический супер тест Артамонова Л.В., учитель математики МКОУ «Москаленский лицей»
ТЕОРИЯ ЧИСЕЛ Выступление ПЕТРОВА ЭМИЛЯ. 6А класс.
Плясуновой Дарьи МОУ СОШ 1 10А класс Свердловская область Нижнесергинский район г. Михайловск.
Бессонова Светлана Александровна учитель математики Государственное бюджетное общеобразовательное учреждение средняя общеобразовательная школа 603 Фрунзенского.
МИР ИНТЕРЕСНЫХ ЧИСЕЛ Работа Максимовой Арины, 6 класс.
Пифагор и его ученики Совершенные числа - это числа, равные сумме своих делителей, исключая само число. Например, 6 = Совершенные числа :
Свойства делимости Подготовила ученица 5,, б класса Маркина Мария.
Числовая система Пифагора Автор: Бараковских Катя 10 А МОУ СОШ 1 Свердловская область, Нижнесергинский район, город Михайловск.
Простые и составные числа Урок математики в 6 классе Составила: учитель математики МКОУ Восточенская ООШ 11 Иванова Галина Ивановна учитель математики.
Транксрипт:

Плясуновой Дарьи МОУ СОШ 1 10А класс Свердловская область Нижнесергинский район г. Михайловск

1 Определение 2 История 3 Примеры 4 Способы построения: 4.1 Формула Сабита 4.2 Метод Вальтера Боро 5 Ссылки

Дружественные числа два различных натуральных числа, для которых сумма всех собственных делителей первого числа равна второму числу и сумма всех собственных делителей второго числа равна первому числу. Иногда частным случаем дружественных чисел считаются совершенные числа: каждое совершенное число дружественно себе.

Дружественные числа были открыты последователями Пифагора. Правда, пифагорейцы знали только одну пару дружественных чисел 220 и 284. Формулу для нахождения некоторых пар дружественных чисел предложил примерно в 850 году арабский астроном и математик Сабит ибн Курра (826901). Его формула позволила найти две новые пары дружественных чисел. Много столетий спустя Эйлер нашёл ещё 65 пар дружественных чисел. Одна из них и Но общего способа нахождения таких пар нет до сих пор. На сентябрь 2007 года известно пар дружественных чисел. Все они состоят из двух чётных или двух нечётных чисел. Есть ли чётно-нечётная пара дружественных чисел, неизвестно. Также неизвестно, существуют ли взаимно простые дружественные числа, но если такая пара дружественных чисел существует, их произведение должно быть больше

Ниже приведены все пары дружественных чисел, меньших и 284 (Пифагор, около 500 до н. э.) 1184 и 1210 (Паганини, 1860) 2620 и 2924 (Эйлер, 1747) 5020 и 5564 (Эйлер, 1747) 6232 и 6368 (Эйлер, 1750) и (Эйлер, 1747) и (Браун, 1939) и (Ибн ал-Банна, около 1300, Фариси, около 1300, Ферма, Пьер, 1636) и (Эйлер, 1747) и (Эйлер, 1750) и (Эйлер, 1747) и (Эйлер, 1747) и (Рольф (Rolf), 1964) и (...) и (...) и (...)

Формула Сабита Если для натурального числа n > 1 все три числа: являются простыми, то числа 2 n pq и 2 n r образуют пару дружественных чисел. Эта формула даёт пары (220, 284), (17296, 18416) и ( , ) соответственно для, но больше никаких пар дружественных чисел для n < Кроме того, многие дружественные числа, например (6232, 6368), не могут быть получены по этой формуле.

Метод Вальтера Боро Если для пары дружественных чисел вида A = au и B = as числа s и p = u + s + 1 являются простыми, причём a не делится на p, то при всех тех натуральных n, при которых оба числа q 1 = (u + 1)p n и q 2 = (u + 1)(s + 1)p n 1 просты, числа B 1 = Ap n q 1 и B 2 = ap n q 2 дружественные.

B2%D0%B5%D0%BD%D0%BD%D1%8B%D0%B5_%D1%87%D0%B8%D1%81%D0%BB%D0%B 0 %E0%F5%20%E4%EB%FF%20%E4%E5%F2%E5%E9&rch=l&jsa=1&sf=0&cf=4#cf=4