СИСТЕМА ДЛЯ РАСЧЕТОВ УДАРНО- ВОЛНОВЫХ ПРОЦЕССОВ ЧЕРЕЗ ИНТЕРНЕТ Институт теплофизики экстремальных состояний РАН, Москва, Россия *konst@ihed.ras.ru Хищенко.

Презентация:



Advertisements
Похожие презентации
ОБЩЕДОСТУПНЫЙ ЭЛЕКТРОННЫЙ СПРАВОЧНИК ПО ТЕПЛОФИЗИЧЕСКИМ СВОЙСТВАМ ВЕЩЕСТВ ПРИ ВЫСОКИХ ДАВЛЕНИЯХ И ТЕМПЕРАТУРАХ Институт теплофизики экстремальных состояний.
Advertisements

MATHEMATICAL MODEL OF ICE SHEET DEFORMATION CAUSED BY SUBMARINE MOTION V. M. Kozin, V. L. Zemlak, S. D. Chizhiumov Shipbuilding Department, State Technical.
WS9-1 WORKSHOP 9 TRANSIENT THERMAL ANALYSIS OF A COOLING FIN NAS104, Workshop 9, March 2004 Copyright 2004 MSC.Software Corporation.
1 Model reduction and uniqueness of thermodynamic projector Alexander Gorban ETH Zurich, Switzerland, and Institute of Computational Modeling Russian Academy.
Ionospheric model. Introduction Because of the complicated nature of the ionosphere, there have been numerous approaches for ionospheric modeling. In.
WORKSHOP 13 NORMAL MODES OF A RECTANGULAR PLATE. WS13-2 NAS120, Workshop 13, May 2006 Copyright 2005 MSC.Software Corporation.
WS6-1 WORKSHOP 6 MODAL FREQUENCY RESPONSE ANALYSIS NAS122, Workshop 6, August 2005 Copyright 2005 MSC.Software Corporation.
Time-Series Analysis and Forecasting – Part IV To read at home.
WS1a-1 WORKSHOP 1A NORMAL MODES ANALYSIS NAS122, Workshop 1a, August 2005 Copyright 2005 MSC.Software Corporation.
Variational calculations of vortex structures in bulk and mesoscopic superconductors Walter Pogosov, Laboratorium voor Vaste-Stoffysica en Magnetisme,
The reconstruction of coding scheme through errors distributions Lyakhovetskii V.A., Karpinskaya V.Ju*, Bobrova E.V. Pavlov Institute of Physiology of.
WS2-1 PAT301, Workshop 2, October 2003 WORKSHOP 2 CANTILEVERED PLATE.
S3-1 PAT318, Section 3, March 2005 SECTION 3 MSC.FATIGUE USER INTERFACE.
PAT312, Section 17, December 2006 S17-1 Copyright 2007 MSC.Software Corporation SECTION 17 ELEMENT PROPERTIES.
WORKSHOP 12 RBE2 vs. RBE3. WS12-2 NAS120, Workshop 12, May 2006 Copyright 2005 MSC.Software Corporation.
© 2002 IBM Corporation Confidential | Date | Other Information, if necessary © Wind River Systems, released under EPL 1.0. All logos are TM of their respective.
Workshop 11 Imprint - Assembly Meshing Wizard. WS11-2 Assembly Meshing Wizard Design goals One comprehensive user interface Intuitive approach for solid.
WS2-1 WORKSHOP 2 IMPORTING A PRESSURE FIELD PAT328, Workshop 2, September 2004 Copyright 2004 MSC.Software Corporation.
WS8-1 PAT328, Workshop 8, September 2004 Copyright 2004 MSC.Software Corporation WORKSHOP 8 Viewing Results for MSC.Nastran Ply PCOMPG Entries Using MSC.Patran.
WORKSHOP 9A 2½ D CLAMP – SWEEP MESHER. WS9A-2 NAS120, Workshop 9A, May 2006 Copyright 2005 MSC.Software Corporation.
Транксрипт:

СИСТЕМА ДЛЯ РАСЧЕТОВ УДАРНО- ВОЛНОВЫХ ПРОЦЕССОВ ЧЕРЕЗ ИНТЕРНЕТ Институт теплофизики экстремальных состояний РАН, Москва, Россия Хищенко К. В. *, Левашов П. Р., Ломоносов И. В. Institute for High Energy Densities, Moscow, RAS Работа выполняется при финансовой поддержке РФФИ, гранты VII Международная конференция «SCIENCE ONLINE: электронные информационные ресурсы для науки и образования» Будва, Черногория мая 2006

EXPERIMENTAL DATA AVAILABLE AT HIGH ENERGY DENSITIES 1.0e e e e e e e e e+05 V, cм 3 /г T, 1000 K P, GPa LIQ.+GAS GAS PLASMA LIQ. MELTING IEX CRYSTALL LM H CP S HPHP H - principal Hugoniot H P - porous Hugoniots S - release isentropes IEX - isobaric expansion

Phase distribution 6.6 km/s, impactor 15 mm in diameter, plate thickness mm s s+ls+l l g+lg+l g s+gs+g Pb impactor, Pb target MULTIPHASE METASTABLE EOS 15 Поварницын М. Е., Хищенко К. В., Левашов П. Р. // Экстремальные состояния вещества. Детонация. Ударные волны / Под ред. Михайлова А. Л. Саров: РФЯЦ–ВНИИЭФ, С. 577–582.

6 types of experiments About registrations for more than 500 substances 4 types of shock-wave data approximations 3 types of caloric EOS Access via the Internet using common browsers Graphical representation of all data EOS calculations (shock Hugoniots, release isentropes, isobars, isochors, cold curves etc.) with graphical representation Modeling of typical shock-wave experiments URL:

DATABASE CONTAINS EXPERIMENTAL DATA ON Shock compression of solid and porous samples Isentropic expansion Sound speed measurements behind shock front Isobaric expansion (exploding wires) Double shock Hugoniots Free surface velocity profiles at shock loading Altshuler L.V. et al. // J. Appl. Mech. Techn. Phys V.22. P.145 Kalitkin N.N., Kuzmina L.V. // Mat. model V.10. P.111 Zhernokletov M.V. et al. Experimental data on shock compression and adiabatic expansion of condensed substances at high energy densities, Chernogolovka, 1996 Trunin R.F. et al. Experimental data on shock-wave compression and adiabatic expansion of condensed substances. Sarov: VNIIEF, 2001 SHOCK HUGONIOTS APPROXIMATIONS Bushman A.V., Lomonosov I.V., Fortov V.E. Equation of state of metals at high energy density. Chernogolovka: 1992 Lomonosov I.V., Fortov V.E., Khishchenko K.V. // Chem. Physics V.14. P.47 Khishchenko K.V. Physics of Extreme States of Matter – Chernogolovka: 2004 EQUATIONS OF STATE

SEARCH BY SUBSTANCE

EXPERIMENTAL POINTS: TABULAR AND TEXTUAL REPRESENTATION

EXPERIMENTAL DATA EDITING (for registered users)

SHOCK COMPRESSION OF NICKEL 1-13 – experimental data on shock compression of nickel samples of different initial densities a3 – approximation of shock-wave data a4 – approximation of quantum- statistical calculations e1 – calculation on semi-empirical equation of state

ISENTROPIC EXPANSION OF COPPER 1, 2, 3, 6 – experimental data on isentropic expansion of copper samples with different initial densities e1 – calculation on semi-empirical equation of state

QUARTZ DOUBLE COMPRESSION FREE SURFACE VELOCITY PROFILE Free surface velocity profile Sample: Mo, mm thick Striker: Al, 0.05 mm thick, velocity 4100 км/с 2, 4 – experimental data e1 – equation of state calculation

EOS CALCULATIONS: THE LIST OF CURVES

TEFLON: EOS CALCULATIONS Different curves calculated using semi- empirical EOS for teflon. Graphical and numerical representation of calculation results Description of calculated curves and experimental points for teflon

MODELING OF TYPICAL SHOCK-WAVE EXPERIMENTS «Collision» and «Impedance matching» methods 3 types of experimental set-ups for each methods Riemann problem is solved with given accuracy using shock Hugoniot approximations and EOSs User can choose materials of all substances participating in the experiment, their initial density and EOSs Modeling results can be presented in graphical (in pressure-particle velocity diagram) and textual form The interface allows one to estimate the influence of EOS or shock Hugoniot approximation on the interpretation of experimental data

«COLLISION» METHOD Striker: aluminum, KEOS7 EOS, W = 5.6 km/s Target: copper, D = 6.64 km/s А1. Given are W, D, and striker shock Hugoniot. Determine pressure P and particle velocity U in shock- compressed striker and target, as well as density ρ and specific internal energy E of the target. А2. Given are striker velocity W and shock Hugonots or EOSs of striker and target. Determine the shock wave velocity D and parameters P, U, ρ, and E in the target. А3. Given are shock wave velocity in the target D and shock Hugoniots or EOSs of striker and target. Determine the target velocity W and parameters P, U, ρ, and E behind shock wave front in the target. Experiment: Altshuler L.V., Kormer S.B., Bakanova A.A., Trunin R.F. // JETP V P.790.

«IMPEDANCE MATCHING» METHOD B1. Given are shock wave velocities in the screen D 1 and in the sample D 2, as well as shock Hugoniot or EOS of the screen. Determine parameters P, U, ρ, and E in the shock-compressed sample. B2. Given are shock wave velocity in the screen D 1, and shock Hugoniot or EOSs of screen and sample. Determine shock wave velocity in the sample D 2 and parameters P, U, ρ, and E behind the shock front. B3. Given is the shock wave velocity in the sample D 2. Determine the shock wave velocity in the screen D 1 and parameters P, U, ρ, and E of the sample behind the shock front. Experiment: Altshuler L.V., Krupnikov K.K., Brazhnik M.I. // JETP V P.886. Striker: iron, KEOS7 EOS, D 1 = 5.38 km/s Target: copper, D 2 = 5.36 km/s

Столкновение кометы с Землей 20 km/s, impactor 1.8 km in diameter

Столкновение кометы с Землей Density distribution 20 km/s, impactor 1.8 km in diameter

CONCLUSIONS AND FUTURE WORK Public database on shock-wave experiments and equations of state has been creating: - 6 types of experimental data, more than points - graphical representation of all data - 3 types of wide-range equations of state - EOS calculation with graphical representation - modeling of typical shock-wave experiments We plan to incorporate multiphase tabular equations of state for metals into the database