Багирова Севиндж Музаффар кызы Открытый урок на тему : Обыкновенные дифференциальные уравнения. ОДУ первого порядка. Уравнения с разделяющимися переменными.

Презентация:



Advertisements
Похожие презентации
Дифференциальные уравнения. Примеры задач приводимые к дифференциальным уравнениям. Дифференциальные уравнения с разделяющими переменными. 11 класс.
Advertisements

Интегральное исчисление. Дифференциальные уравнения.
Обыкновенные дифференциальные уравнения Лекция 4.
Дифференциальные уравнения Срайчук Иван 11 класс КОШ 86.
ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. Дифференциальным уравнением (ДУ) называется уравнение, содержащее производные от искомой функции или её дифференциалы. или.
Дифференциальные уравнения (продолжение) План лекции I. Дифференциальные уравнения с разделяющимися переменными (примеры) II. Линейные однородные уравнения.
Обыкновенные дифференциальные уравнения Лекция 4.
ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ-6. Дифференциальные уравнения высших порядков.
Дифференциальные уравнения 2-го порядка Лекция 5.
Company Logo ДУ с разделяющимися переменными 1. ДУ с разделенными переменными. y' = f( x) или f (x) d x + (y) d y = 0 2. ДУ с разделяющимися.
Кафедра математики и моделирования Старший преподаватель Е.Г. Гусев Курс «Высшая математика» Лекция 9. Тема: Типы дифференциальных уравнений. Цель: Ознакомиться.
Лектор Пахомова Е.Г г. Дифференциальные уравнения Тема: Дифференциальные уравнения: основные понятия. Уравнения с разделенными и разделяющимися переменными.
Дифференциальные уравнения 1-го порядка F(x, y, y)=0 - дифференциальное уравнение 1-го порядка y=f (x, y) – уравнение, разрешенное относительно производной.
Неопределенный интеграл.. §1 Первообразная функция. Понятие неопределенного интеграла. Определение: Первообразной функцией для данной функции f(x) на.
Глава I Дифференциальные уравнения первого порядка.
5.Уравнение в полных дифференциалах. Интегрирующий множитель.
ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. Задача Коши.
Общий вид ОДУ второго порядка F(x, y, y,y) = 0. (2.1) Частный случай ОДУ (2.1) – уравнение разрешенное относительно старшей производной (нормальная форма.
Глава 2. Дифференциальные уравнения высших порядков.
Дифференциальные уравнения высших порядков Линейные неоднородные дифференциальные уравнения Метод вариации произвольных постоянных Линейные неоднородные.
Транксрипт:

Багирова Севиндж Музаффар кызы Открытый урок на тему : Обыкновенные дифференциальные уравнения. ОДУ первого порядка. Уравнения с разделяющимися переменными Азербайджанский Государственный Аграрный Университет. Педагог кафедры Физики-Математики:

Обыкновенным дифференциальным уравнением называется уравнение, связывающее между собой значения независимой переменной x, неизвестной функции y = f(x) и её производных ( или дифференциалов ): Порядком уравнения называется максимальный порядок n входящей в него производной (или дифференциала). Пример: y (4) – y + x = 0 - уравнение четвёртого порядка. Функция y(x) называется решением (или интегралом) дифференциального уравнения если при подстановке ее в уравнение обращает его в тождество.

ОДУ первого порядка Обыкновенным дифференциальным уравнением первого порядка называется уравнение вида: где x - независимая переменная, y(x) - неизвестная функция Общее решение: Пример: общее решение:

Разделяют несколько типов (видов) обыкновенных дифференциальных уравнений: -Уравнения с разделяющимися переменными, -Однородные уравнения, -Линейные уравнения, -Уравнение в полных дифференциалах, -и т.д. Остановимся подробнее на каждом из этих типов уравнений.

Уравнения с разделёнными переменными. Так называются уравнения вида удовлетворяющее начальному условию f(x)dx + g(y)dy = 0, Интегрируя, получим - общий интеграл (общее решение) этого уравнения. Пример: - общее решение

Уравнения с разделяющимися переменными. Так называются уравнения вида Эти уравнения легко сводятся к уравнению с разделёнными переменными: Записываем уравнение в форме: затем делим на g(y) и умножаем на dx:. Это уравнение - с разделёнными переменными. Интегрируя, получим общий интеграл:

Выразим у из последнего выражения как функцию х, получим общее решение: Пример :

Уравнения с однородной правой частью. Так называются уравнения со специальным видом зависимости функции f(x, y) от своих аргументов: Это уравнение сводится к уравнению с разделяющимися переменными относительно новой неизвестной функции u(x) заменой: Подставляя в уравнение y = x·u, y = u + x·u, получим (это - уравнение с разделяющимися переменными), - это общий интеграл уравнения относительно переменных x, u

Пример : - общее решение уравнения

Окончательно, получим общее решение: Пример :

Линейные уравнения. ДУ первого порядка называется линейным, если неизвестная функция y(x) и её производная входят в уравнение в первой степени: здесь p(x), q(x) - непрерывные функции. Пример :

Для решения уравнения представим y(x) в виде произведения двух новых неизвестных функций u(x) и v(x): y(x) = u(x)v(x). Тогда и уравнение приводится к виду: или Это уравнение решаем в два этапа: сначала находим функцию v(x) как частное решение уравнения с разделяющимися переменными: затем находим u(x) из уравнения:

Отметим, решая уравнение на v(x) мы не вводим в это решение произвольную постоянную C, нам достаточно найти одну функцию v(x), обнуляющую слагаемое со скобками. Запоминать эту формулу не надо, лучше усвоить порядок действий и воспроизводить его при решении каждой задачи.

Пример : Решение: и общее решение уравнения.

Для нахождения частного решения, соответствующего начальным условиям (задача Коши), подставим в общее решение Решение задачи:

Уравнение в полных дифференциалах. Так называется уравнение вида (P(x, y), Q(x, y) - непрерывно дифференцируемы) в случае, если его левая часть является полным дифференциалом некоторой функции u(x, y), т.е. если существует такая функция u(x, y), что Необходимым и достаточным условием существования такой функции является условие: Если - уравнение в полных дифференциалах, то его правая часть равна 0, т.е. принимает вид du(x, y) = 0. На решении y(x) получим du(x, y(x)) = 0, следовательно, u(x,y(x)) = C, где C - произвольная постоянная. Соотношение u(x, y) = C и есть общее решение уравнения в полных дифференциалах. P(x, y) dx + Q(x, y) dy = 0.

Для нахождения функции u(x, y) решается система уравнений Из первого уравнения этой системы находим: с точностью до произвольной дифференцируемой по y функции (эта функция играет роль постоянной интегрирования; так как интегрирование ведётся по переменной x. Дифференцируем эту функцию по y и приравниваем выражению, стоящему во втором уравнении системы (т.е. ), получим дифференциальное уравнение из которого можно найти.

Пример: найти общее решение уравнения Убедимся, что это - уравнение в полных дифференциалах..

Задание: К какому типу относятся дифференциальные уравнения:

ОДУ высших порядков Обыкновенным дифференциальным уравнением называется уравнение, связывающее между собой значения независимой переменной x, неизвестной функции y = f(x) и её производных (или дифференциалов): Общим решением (общим интегралом) уравнения называется соотношение вида:

Некоторые типы уравнений, допускающие понижение порядка. Уравнение вида решается последовательным n -кратным интегрированием. Переобозначив постояные, общее решение запишем в виде : y = cos x + C 1 x 3 + C 2 x 2 + C 3 x + C 4. Пример :

Уравнение, не содержащее в явном виде неизвестную функцию и её младшие производные. Порядок уравнения вида F(x, y (k), y (k+1), y (k+2 ), …,y (n) ) = 0, не содержащего функции y(x) и (k – 1) младшую производную этой функции в явном виде, может быть понижен ровно на k единиц введением новой неизвестной функции z(x) = y (k) (x). Тогда уравнение примет вид т.е. будет уравнением (n – k)-го порядка. После нахождения z (x) последовательным интегрированием решается уравнение y (k) (x)= z(x).

Пример: Понизить порядок уравнения: Младшая производная, входящая в явной форме в уравнения, - вторая, поэтому делаем замену искомой функции: Тогда: и уравнение примет вид

Уравнение, не содержащее в явном виде независимую переменную x. Порядок уравнения не содержащего явно x, может быть понижен на 1 с помощью приёма, который заключается в том, что вводится новая функциональная зависимость от y: Пример: Понизить порядок уравнения: Переменная x явно в уравнение не входит, поэтому полагаем, тогда. Просто сократить на p это уравнение нельзя, так как можно потерять семейство решений поэтому рассматриваем два случая: