Карагандинский государственный медицинский университет Кафедра терапевтической стоматологии с курсом ортопедической стоматологии ЛЕКЦИЯ Элективная дисциплина «Тема: Металлы, сплавы металлов и их свойства (физико-механиеческие, химические, технологические)» Специальность: «Стоматология» Курс: 2 Время (продолжительность) 1 час Караганда 2011 г.
Цель: ознакомить студентов с металлами, сплавами металлов, их физико-механическими, химическими, технологическими свойствами. План лекции: Металлы. Типы взаимоотношения компонентов сплава. Физико-механические свойства металлов и сплавов металлов Химические свойства металлов и сплавов металлов Технологические свойства металлов и сплавов металлов
Металлами являются вещества, характеризующиеся в обычных условиях высокими электро- и теплопроводностью, ковкостью, «металлическим» блеском, непрозрачностью и другими свойствами, обусловленными наличием в их кристаллической решетке большого количества не связанных с атомными ядрами подвижных электронов проводимости. В технике металлы принято делить на черные (железо и сплавы на его основе) и цветные (все остальные). Свойства металлов объясняются особенностями их строения: расположением и характером движения электронов в атомах; расположением атомов, ионов и молекул в пространстве; размерами, формой и характером кристаллических образований. При разных температурах некоторые химические элементы имеют 2 и более устойчивых типа кристаллических решеток. Существование одного металла в различных кристаллических формах (модификациях) при разных температурах называется полиморфизмом, или аллотропией, а переход из одного строения в другое полиморфным (аллотропическим) превращением. Аллотропические формы, получающиеся в результате полиморфного превращения, обычно обозначают начальными буквами греческого алфавита а, р\ у, 8. К таким полиморфным металлам относятся, например, кобальт (Со), олово (Sn), марганец (Мп), железо (Fe). В свою очередь изменение строения кристаллической решетки вызывает изменение свойств механических, химических и магнитных свойств, электропроводности, теплопроводности, теплоемкости и др. К металлам, которые имеют только один тип кристаллической решетки и называются изоморфными, относятся алюминий (А1), медь (Си), никель (Ni), хром (Сг), ванадий (W) и др.
Кристаллическая решетка алюминияКристаллическая решетка железа Металлическая кристаллическая решетка
Сплавы металлов Сплавы- это металлы, которые состоят из нескольких химических элементов, из которых хотя бы один должен быть металлом.
Применение металлов в стоматологии
Металлические сплавы это макроскопически однородные системы, состоящие из двух или более металлов с характерными металлическими свойствами. В широком смысле сплавами называются любые однородные системы, получаемые сплавлением металлов, неметаллов, оксидов, органических веществ. Структура и свойства чистых металлов существенно отличаются от структуры и свойств сплавов,состоящих из двух и более металлов. По количеству элементов (компонентов сплава) различают двух-, трех- или многокомпонентные сплавы. Образование новых однородных веществ при взаимном проникновении атомов называют фазами сплава. В расплавленном состоянии все компоненты обычно находятся в атомарном состоянии, образуя неограниченный жидкий однородный раствор, в любой точке которого химический состав статистически одинаков. При затвердевании расплава атомы компонентов укладываются в порядке кристаллической решетки, образуя твердое кристаллическое вещество сплав.
Существуют три типа взаимоотношений компонентов сплава: 1) образование механической смеси, когда каждый элемент кристаллизуется самостоятельно, при этом свойства сплава будут усредненными свойствами элементов, которые его образуют; 2) образование твердо го раствора, когда атомы компонентов образуют кристаллическую решетку одного из элементов, являющегося растворителем, при этом тип решетки основного металла сохраняется; 3) образование химических соединений, когда при кристаллизации разнородные атомы могут соединяться в определенной пропорции с образованием нового типа решетки, отличающейся от решеток металлов сплава. Образование химического соединения сложный процесс, при котором создается новое вещество с новыми качествами, а решетка при этом имеет более сложное строение. Соединение теряет основное свойство металла способность к пластической деформации, становится хрупким. Соответственно этому, свойства сплавов будут зависеть от того, какие фазы в них образуются: твердые растворы, химические соединения или смеси чистых металлов. Если атомные объемы двух металлов и их температуры плавления резко отличаются, то в жидком состоянии такие элементы обладают, как правило, ограниченной растворимостью.
Зависимость свойств от состава сплавов: 1) в сплавах, имеющих структуру механических смесей, свойства изменяются в основном прямолинейно. Некоторые свойства механических смесей, в первую очередь твердость и прочность, зависят от размеров частиц (т. е. от степени дисперсности) значительно повышаются при измельчении; 2) в сплавах твердых растворах свойства изменяются по криволинейной зависимости; 3) при образовании химических соединений свойства изменяются скачкообразно. Многие физические и механические свойства сплавов четко зависят от структуры, однако некоторые технологические свойства, такие, как литейные (т. е. способность обеспечить хорошее качество отливки) или свариваемость, зависят не столько от структуры, сколько от того, в каких температурных условиях проходило затвердевание сплавов. Так, например, стоматологические сплавы золота, отлитые в форму и быстро охлажденные в воде, будут иметь вид твердого раствора, отличающегося характерной мягкостью, ковкостью и меньшей прочностью, чем сплавы с упорядоченным расположением атомов [Копейкин В. Н., 1995]. Однако если ту же отливку охлаждать медленно до комнатной температуры, то твердый раствор, превалирующий при температуре больше 424° С, полностью переходит в фазу AuCu путем перераспределения атомов в пространственной кристаллической решетке в более упорядоченную структуру. Это приводит к повышению прочности и твердости при потере ковкости сплава. Сплавы с высоким содержанием золота (выше 88%) не образуют упорядоченной фазы.
Помимо свойств металлической матрицы, имеющей определенную кристаллическую решетку и тем самым определяющую основные параметры механических свойств, на последние могут оказывать влияние дополнительное легирование такими элементами, как молибден, вольфрам, ниобий, углерод, азот и др. Присутствие их в сплавах даже в небольших количествах значительно повышает прочность, износостойкость, жаропрочность и другие свойства, необходимые при эксплуатации конструкций. Добавка небольших количеств (0,005%) иридия и рутения превращает грубую зернистую структуру сплавов золота в мелкозернистую, что дает возможность улучшить на 30% прочность на растяжение и предел прочности при удлинении, не влияя при этом на твердость и предел текучести. Особенно эффективно увеличивается прочность при легировании кобальтохромовых сплавов 4-6% молибденом и дополнительно 1-2% ниобия в присутствии 0,3% углерода. В металлических сплавах образуются различные химические соединения как между двумя или несколькими металлами (их называют интерметаллидами), так и между металлом и неметаллом (карбиды, оксиды и т. д.). Наличие неметаллических включений в структуре сплава ведет к образованию усталости, трещин, внутренних пор и полостей, коррозионному растрескиванию отливок, что приводит в конечном счете к разрушению. Неметаллические включения играют существенную роль в процессе вязкого и усталостного разрушения.
Физико-механические свойства металлов и сплавов металлов Металлы имеют различные цветовые оттенки почти всего спектра, однако, как правило, для недрагоценных металлов это серый, голубоватый, синеватый различной степени выраженности и разных комбинаций. Для драгоценных металлов характерны желто-оранжевая гамма и белесовато-серебристый оттенок, эти вещества обладают достаточно высокой плотностью. Так, плотность золотосодержащих сплавов составляет г/см 3, плотность кобальтохромовых сплавов равна 8,4 г/см 3, плотность никелехромовых сплавов - 8,2 г/см 3. Как уже указывалось, они теплопроводны и электропроводны, а также расширяются и сжимаются соответственно при нагревании и охлаждении. Температура плавления у металлов широко варьируется. В связи с этим выделяют: легкоплавкие металлы с температурой плавления ниже, чем у чистого олова (232° С) тугоплавкие металлы, температура плавления которых выше, чем у железа (1535° С). Между этими полюсами расположены средние температуры плавления, свойственные большинству металлов и сплавов. Температура плавления и температура затвердевания чистых металлов всегда постоянны, и, пока не исчезнет одна фаза расплавление твердой части при нагревании или затвердевание жидкой части при охлаждении, температура остается неизменной.
Пластическая деформация приводит к изменению физических свойств металла, а именно: повышению электросопротивления; уменьшению плотности; изменению магнитных свойств. Все внутренние изменения, которые происходят при пластической деформации, вызывают упрочнение металла. Прочностные характеристики (временное сопротивление, предел текучести, твердость) повышаются, а пластические снижаются. Упрочнение металла под действием пластической деформации называют наклепом. Нагартованные (имеющие наклеп) металлы более склонны к коррозионному разрушению при эксплуатации. Для полного снятия наклепа металлы подвергаются рекристаллизационному отжигу. Рекристаллизация это процесс возникновения и роста новых недеформированных кристаллических зерен поликристалла за счет других зерен. Рекристаллизацию применяют на практике для придания материалу наибольшей пластичности.. Температура рекристаллизации имеет важное практическое значение. Чтобы восстановить структуру и свойства наклепанного (нагартованного) металла (например, при продолжении штамповки коронки под прессом после наколачивания гильзы на мелотовой модели), его надо нагреть выше температуры рекристаллизации. Совокупность свойств, характеризующих сопротивление металла и сплава действию приложенных к нему внешних механических сил (нагрузок), принято называть механическими свойствами. Силы могут быть приложены в виде нагрузки: статической (плавно возрастающей); динамической (возрастающей резко и с большой скоростью); повторно-переменной (многократно прикладываемой, изменяющейся по величине и направлению).
Химические свойства металлов и сплавов металлов К ним относятся растворимость, окисляемость, коррозионная стойкость. Коррозия (лат. corrosio разъедание) разрушение твердых тел, вызванное химическими и электрохимическими процессами, развивающимися на поверхности тела при его взаимодействии с внешней средой. Коррозионная стойкость способность материалов сопротивляться коррозии. У металлов и сплавов коррозионная стойкость определяется скоростью коррозии, т. е. массой материала, превращенной в продукты коррозии, с единицы поверхности в единицу времени либо толщиной разрушенного слоя в миллиметрах в год. Коррозионная усталость понижение предела выносливости металла или сплава при одновременном воздействии циклических напряжений и коррозионной среды. Различают, по крайней мере, 3 формы коррозионного разрушения: 1.Равномерная коррозия разрушает металл, мало влияя на его механическую прочность. Она встречается у серебряного припоя. 2.Местная коррозия приводит к разрушению только отдельных участков металла и проявляется в виде пятен и точечных поражений различной глубины. Она возникает в случае неоднородной поверхности, при наличии включений или внутренних напряжений, при грубой структуре металла. Этот вид коррозии снижает механические свойства деталей. 3.Межкристаллическая коррозия характеризуется разрушением металла по границе зерен (кристаллов). При этом нарушается связь между кристаллами, и агрессивная среда, проникая вглубь, разрушает металл. Ей особенно подвержены нержавеющие стали.
Технологические свойства металлов и сплавов металлов. Металлы в расплавленном состоянии обладают текучестъю; используя это свойство, можно отливать детали по заданной форме. Дальнейшее повышение температуры расплавленного металла резко повышает его текучесть, так как при этом уменьшается вязкость. Однако увеличивать температуру более чем на ° С выше точки плавления не рекомендуется, так как при этом усиливается поглощение газов и в отливке образуются газовые раковины. Возникновение неоднородности при затвердевании сплава в результате ряда причин называется ликвацией. Основным фактором, приводящим к ликвации, является скорость охлаждения сплава. Внутреннее напряжение внутренние силы, возникающие в деформируемом теле под влиянием внешних механических или температурных воздействий. Возникающие напряжения могут снизить прочность отливки или даже нарушить ее целостность. Это необходимо учитывать при одновременной отливке тонких деталей дуговых (бюгельных) протезов вместе с более массивными литыми частями каркаса.
Обжиг нагрев и выдержка при высокой температуре (в обжиговых печах) различных материалов для придания им необходимых свойств или удаления примесей (например, обжиг руды, глины, огнеупоров, керамики). Отжигтермическая обработка материалов (например, металлов, полупроводников, стекол), заключающаяся в нагреве до определенной температуры, выдержке и медленном охлаждении. Цель улучшение структуры и обрабатываемости, снятие внутренних напряжений и т. д. Закалка термическая обработка материалов, заключающаяся в нагреве и последующем быстром охлаждении с целью фиксации высокотемпературного состояния материала или предотвращения (подавления) нежелательных процессов, происходящих при медленном охлаждении. Отпуск металлов термическая обработка закаленных сплавов (главным образом нержавеющей стали): нагрев (ниже нижней критической точки), выдержка и охлаждение. Цель оптимальное сочетание прочности, пластичности и ударной вязкости.
Таким образом, к основным видам термической обработки (отжиг, закалка, отпуск) могут быть добавлены еще два ее сложных вида химико-термическая и термомеханическая. Ряд металлов, обладающих малым сопротивлением внешней деформирующей силе и пластичностью, можно подвергать прокатке, вологению, штамповке, ковке. Кроме того, многие металлы можно обрабатывать резанием, сваривать, паять.
Контрольные вопросы (обратная связь) Какие вещества являются металлами, металлическими сплавами? Какие 3 типа взаимоотношении компонентов сплава? Какие физико-механические свойства металлов и сплавов металлов? Какие химические и технологические свойства металлов и сплавов металлов?
Литература Основная: Аболмасов Н.Г., Аболмасов Н.Н., Бычков В.А., Аль-Хаким А. Ортопедическая стоматология М, – 496 с. В.Н Копейкин Руководство по ортопедической стоматологии.., М., с. Трезубов В.Н., Щербаков А.С., Мишнёв Л.М. Ортопедическая стоматология (факультетский курс)- СПб – 576 с. Рузуддинов С.Р., Темирбаев М.А., Алтынбеков К.Д. Ортопедическая стоматология., Алматы, – 621 с. Дополнительная: И.Ю. Лебеденко, С.Х. Каламкаров Ортопедическая стоматология. Алгоритмы диагностики и лечения. М – 96 с. В.Н. Трезубов, Л.М. Мишнев, Е.Н. Жулев. Ортопедическая стоматология. Прикладное материаловедение.- М, – 473 с. Алтынбеков К.Д. Тіс протездерін дайындауда колданылатын құрал-жабдықтар мен материалдар. – А, – 380 б. А.П. Воронов, И.Ю. Лебеденко, И.А. Воронов «Ортопедическое лечение больных с полным отсутствием зубов». – М, 2006, 320 с. Ибрагимов Т.И. Актуальные вопросы ортопедической стоматологии: учебное пособие с.