Замечательные точки окружности. I. Математический диктант Вариант 1 1. Биссектрисой треугольника называется … 2. Высотой треугольника называется … 3.

Презентация:



Advertisements
Похожие презентации
Замечательные точки треугольника К числу замечательных точек треугольника относятся: а) точка пересечения биссектрис – центр вписанной окружности; б) точка.
Advertisements

Замечательные точки треугольника К числу замечательных точек треугольника относятся: а) точка пересечения биссектрис – центр вписанной окружности; б) точка.
Теорема Чевы. Замечательные точки треугольника. Семенова Анастасия 8 « Б »
Медиана, биссектриса, высота треугольника. Теорема: Из точки, не лежащей на прямой, можно провести перпендикуляр к этой прямой и причем только один.
Четыре замечательные точки треугольника г. Пермь, 2012 Гимназия 1 Учитель математики Медведева Л.П.
Медиана, биссектриса, высота треугольника. Медиана – это отрезок, соединяющий вершину треугольника с серединой противоположной стороны.
Задача 1. С А В О 3 Дано: Р АВО =8 см Найти:Р АВС.
ТЕМА УРОКА: «Четыре замечательные точки треугольника»
Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника,то такие треугольники.
Четыре замечательные точки треугольника А В С k n p О.
Элементы треугольника Медиана треугольника – Биссектриса треугольника – Высота треугольника – отрезок, соединяющий вершину треугольника с серединой противоположной.
1) Около треугольника описана окружность. Назовите вид треугольника в случае, если ее центр находится: а) внутри треугольника; в) на одной из его сторон;
1. На радиусе окружности, как на диаметре, построена окружность. Докажите, что любая хорда большей окружности, проведенная из их общей точки, делится.
Геометрия Треугольник. Содержание: 1) Давайте вспомним. 2)Подобные фигуры 3)Определение подобных треугольников 4)Признаки подобия треугольника 5) Это.
Что означает выражение С 1 С 1 В 1 В 1 А 1 А 1 С В А.
Средняя линия треугольника Урок 1. I. Устная работа 1) Может ли треугольник быть невыпуклым? 2) Где расположена точка пересечения высот прямоугольного.
Треугольники. Задачи на построение.. Содержание: Определение Виды треугольника Первый признак равенства треугольников. Доказательство. Второй признак.
Повторение за курс базовой школы Преподаватель математики Луцевич Н.А.
ПОДОБНЫЕ ТРЕУГОЛЬНИКИ © Т.И.Каверина, Пропорциональные отрезки Отношением отрезков AB и CD называется отношение их длин, т.е. Отрезки AB и CD пропорциональны.
Треугольники Треугольники Выполнила Ибраимова Акмарал Ученица 7«Б» класса.
Транксрипт:

Замечательные точки окружности

I. Математический диктант Вариант 1 1. Биссектрисой треугольника называется … 2. Высотой треугольника называется … 3. Если точка пересечения серединных перпендикуляров сторон треугольника находится вне его, то … 4. Треугольник имеет … медиан. Вариант 2 1. Медианой треугольника называется … 2. Серединным перпендикуляром стороны треугольника называется … 3. Если точка пересечения серединных перпендикуляров сторон треугольника находится на его стороне, то … 4. Треугольник имеет … биссектрис.

Новый материал Изобразим треугольник ABC: а) остроугольный; б) прямоугольный; в) тупоугольный. Проведем все его высоты. Сделаем соответствующее предположение и докажем следующую теорему.

Теорема. Высоты треугольника или их продолжения пересекаются в одной точке (ортоцентре треугольника).

Доказательство. Через вершины данного треугольника АВС проведем прямые, параллельные противоположным сторонам.

Заметим, что высоты треугольника могут не пересекаться. Изображен тупоугольный треугольник ABC, в котором продолжения высот AA1, BB1, CC1 пересекаются в одной точке H, а сами высоты не пересекаются. не пересекаются.

Задание Изобразим треугольник ABC: а) остроугольный; б) прямоугольный; в) тупоугольный. Проведем все его медианы. Сделаем соответствующее предположение о том, что все медианы треугольника пересекаются в одной точке. Теперь измерим все медианы от вершины до точки пересечения всех медиан, и от этой точки до соответствующей стороны. Сделаем предположение об отношении, в котором делит каждую медиану точка их пересечения и докажем следующую теорему.

Теорема. Медианы треугольника пересекаются в одной точке (центроиде треугольника), и делятся в этой точке в отношении 2:1, считая от вершин.

Доказательство. В треугольнике АВС проведем медианы АD и ВЕ и их точку пересечения обозначим через О. Отрезок ED будет средней линией треугольника АВС. Проведем среднюю линию HG в треугольнике АВО. Треугольники HGO и EDO равны (по второму признаку равенства треугольников). Следовательно, HO=OE и GO=OD. Таким образом, имеем AG=GO=OD, BH=HO=OE, т.е. медианы АD и BE в точке пересечения делятся в отношении 2:1, считая от соответствующей вершины. Медиана, проведенная из вершины С, также должна делить медиану АD в отно­шении 2:1. Следовательно, она будет проходить через точку О, т.е. все три медианы будут пересекаться в одной точке.

Устно 1,2,3,4,5

9

10

VI. Задание на дом 1. Выучить разобранную на уроке теорию (п. 38 учебника). 2. Решить задачи.7,8,11,22,23