Тема 2. 1-е начало термодинамики §2.1. Работа
ΔxΔx S ΔVΔV А F Работа – функция процесса!
Три различных пути перехода из состояния (1) в состояние (2) Работа – функция процесса!
V p 1) Изобарический процесс ( р = const) 2) Изохорический процесс ( V = const) 3) Изотермический процесс ( T = const) V1V1 V2V2
Тема 2. 1-е начало термодинамики §2.2.Внутренняя энергия. Теорема о равнораспределении энергии по степеням свободы
i =3 – число поступательных степеней свободы Для одноатомного идеального газа: Внутренняя энергия системы: y z x vxvx vyvy vzvz
Теорема о равнораспределении энергии по степеням свободы (теорема Больцмана) Больцман (Boltzmann) Людвиг (1844 – 1906) В состоянии теплового равновесия на каждую степень свободы молекулы приходится одинаковая энергия, равная kT/2.
y z x y z x i пост =3 i вр =3 Для многоатомного газа (n 3): Для двухатомного газа : i пост =3 i вр =2 ωxωx ωyωy ωzωz Вращательная составляющая энергии молекулы
Для линейных многоатомных молекул : y z x y z x Для двухатомного газа : i пост =3 i вр =2
i пост =3; i вр =3; i кол =3n-6 (для нелинейной молекулы) Для многоатомного газа (n 3): Колебательная составляющая энергии молекулы Для двухатомного газа : i пост =3 i вр =2 i кол =1 i пост =3; i вр =2; i кол =3n-5 (для линейной молекулы)
Внутренняя энергия газа: Внутренняя энергия – функция состояния! Полная энергия молекулы: i =i пост + i вр +2i кол
§2.3.Теплота. 1-е начало термодинамики Тема 2. 1-е начало термодинамики
ΔVΔV V p V1V1 V2V2 T1T1 T2T2 Q Q – теплота (энергия, передаваемая системе из окружающей среды за счет теплового контакта) На примере изобарического процесса:
– 1-е начало термодинамики (закон сохранения энергии применительно к термодинамическим процессам) p V 1 2 V1V1 V2V2 A Для бесконечно малого процесса: Теплота – функция процесса!
§2.4.Теплоемкость идеального газа. Теплоемкость при постоянном объеме
Теплоемкость: Молярная теплоемкость: Удельная теплоемкость: Теплота – функция процесса, теплоемкость – функция процесса!
Теплоемкость при изохорическом процессе (V = const ): Внутренняя энергия идеального газа:
§2.5.Теплоемкость при постоянном давлении. Соотношение Майера
Теплоемкость при изобарическом процессе (р = const ): – соотношение Майера
§2.6.Адиабатический процесс. Уравнение Пуассона
В адиабатическом процессе - первое начало термодинамики
уравнение Пуассона Пуассон (Poisson) Симон-Дени (1781 – 1840) показатель адиабаты: γ (n=1) = 1,67; γ (n=2) = 1,4; γ (n3) = 1,33 V p адиабата изотерма
§2.7.Работа при адиабатическом процессе Тема 2. 1-е начало термодинамики
п
Конец темы