Инжениринг трафика
Постановка задачи TE Две группы целей Traffic Engineering: 1.Ориентированные на улучшение характеристик трафика: Минимизации процента потерь пакетов Минимизации задержек в очередях Максимизации передаваемых всплесков трафика Рассматриваются относительно всего набора потоков трафика, например: min (max Pi), где Pi – потери i-го потока
2.Ориентированные на улучшение коэффициента использования ресурсов: максимизация загрузки каждого устройства и канала максимизация общей производительности сети (пакеты в сек) Обе группы целей достигаются при снижении уровня заторов (congestion) в сети Затор – появление большой очереди пакетов в определенной точке сети (порт, внутренний буфер устройства), приводит к длительному ожиданию пакетов и потерям при превышении очереди емкости буфера
Влияние заторов Заторы приводят к: Снижение качественных характеристик передаваемого трафика – большие задержки, высокий процент потерь при постоянных заторах в какой-либо части сети (если средняя интенсивность трафика постоянно превышает среднюю пропускную способность канала или устройства) Неэффективному использованию ресурсов – остальные (кроме перегруженных) ресурсы недоиспользуются, так как к ним поступает меньше пакетов (из-за потерь)
Причины появления заторов 1.Сетевых ресурсов недостаточно для обслуживания предложенной нагрузки (offered load) 2.Потоки трафика неэффективно распределены по инфраструктуре сети
Устранение заторов 1. Недостаток ресурсов устраняется: Увеличением емкости ресурсов – замена каналов и устройств на более производительные Применением классической техники борьбы с заторами: ограничение интенсивности входных потоков (rate limit) управление очередями для перераспределения ресурса в пользу привилегированного трафика (приоритеты)
Устранение заторов (2) 2. Неэффективность распределения потоков трафика устраняется методами Traffic Engineering – предложенная нагрузка более сбалансировано заполняет имеющиеся каналы и устройства. Пути следования трафика по сети выбираются в общем случае отличными от путей, выбираемых IGP
Предложенная нагрузка
Распределение нагрузки по сети – выбор путей следования трафика R R2R2 R3R3 R4R4 R5R5 R6R6 R7R7 R8R8 R9R9 R10 R11
Критерий оптимального распределения нагрузки Min (max Ki), где Ki – коэффициент использования i-го ресурса Ресурс – входной и выходной интерфейсы каждого маршрутизатора Какой коэффициент использования входного интерфейса маршрутизатора R1? Какой интерфейс в сети имеет максимальный коэффициент использования? Как лучше проложить путь для нового потока R2-R6 с интенсивностью 10?