Простейший колебательный контур.
КОЛЕБАТЕЛЬНЫЙ КОНТУР, замкнутая электрическая цепь, состоящая из конденсатора емкостью С и катушки с индуктивностью L, в которой могут возбуждаться собственные колебания с частотой, обусловленные перекачкой энергии из электрического поля конденсатора в магнитное поле катушки и обратно.
Простейший колебательный контур.
L – ИНДУКТИВНОСТЬ L – ИНДУКТИВНОСТЬ КАТУШКИ КАТУШКИ C – ЭЛЕКТРОЁМКОСТЬ C – ЭЛЕКТРОЁМКОСТЬ КОНДЕНСАТОРА КОНДЕНСАТОРА
L – ИНДУКТИВНОСТЬ КАТУШКИ
L – ИНДУКТИВНОСТЬ КАТУШКИ L – ИНДУКТИВНОСТЬ КАТУШКИ [ L ] = [ Гн ] [ L ] = [ Гн ]
C – ЭЛЕКТРОЁМКОСТЬ КОНДЕНСАТОРА
[ C ] = [ Ф ] [ C ] = [ Ф ]
В реальных колебательных контурах всегда есть активное сопротивление, которое обусловливает затухание колебаний.
Периодические или почти периодические изменения заряда, силы тока и напряжения называются электромагнитными колебаниями. Периодические или почти периодические изменения заряда, силы тока и напряжения называются электромагнитными колебаниями.
Обычно эти колебания происходят с очень большой частотой, значительно превышающей частоту механических колебаний. Обычно эти колебания происходят с очень большой частотой, значительно превышающей частоту механических колебаний. ٧ = 50 Гц ٧ = 50 Гц
Поэтому для их наблюдения и исследования самым подходящим прибором является электронный осциллограф
ОСЦИЛЛОГРАФ (от лат. oscillo качаюсь и «граф»), измерительный прибор для наблюдения зависимости между двумя или несколькими быстро меняющимися величинами (электрическими или преобразованными в электрические). Наиболее распространены электронно- лучевые осциллографы, в которых электрические сигналы, пропорциональные изменению исследуемых величин, поступают на отклоняющие пластины осциллографической трубки; на экране трубки наблюдают или фотографируют графическое изображение зависимости.
СВОБОДНЫЕ КОЛЕБАНИЯ - колебания в системе, которые возникают после выведения её из положения равновесия. колебания в системе, которые возникают после выведения её из положения равновесия. Система выводится из равновесия при сообщении конденсатору заряда Система выводится из равновесия при сообщении конденсатору заряда
ВЫНУЖДЕННЫЕ КОЛЕБАНИЯ - колебания в цепи под действием внешней периодической электродвижущей силы. колебания в цепи под действием внешней периодической электродвижущей силы.
Преобразование энергии в колебательном контуре ЗАРЯДКА КОНДЕНСАТОРА 0
Преобразование энергии в колебательном контуре конденсатор получил электрическу ю энергию Wэл = C U 2 / 2 1 I I
Преобразование энергии в колебательном контуре конденсатор разряжается, в цепи появляется электрический ток. При появлении тока возникает переменное магнитное поле. W = Сu 2 / 2 + Li 2 / 2 2
Преобразование энергии в колебательном контуре По мере разрядки конденсатора энергия электрического поля уменьшается, но возрастает энергия магнитного поля тока W м = L I 2 / 2 3
Преобразование энергии в колебательном контуре Полная энергия электромагнитного поля контура равна сумме энергий магнитного и электрического полей. W = L i 2 / 2 + C u 2 / 2 4 I I -
Преобразование энергии в колебательном контуре Конденсатор перезарядился W эл = C U 2 / 2 5 I I
Преобразование энергии в колебательном контуре Электрическая энергия конденсатора преобразуется в магнитную энергию катушки с током. Электрическая энергия конденсатора преобразуется в магнитную энергию катушки с током. - W = L i 2 / 2 + C u 2 / 2 6 I I
Преобразование энергии в колебательном контуре Конденсатор разрядился. Электрическая энергия конденсатора равна нулю, а магнитная энергия катушки с током максимальная. W м = L I 2 / 2 7
Преобразование энергии в колебательном контуре Полная энергия электромагнитного поля контура равна сумме энергий магнитного и электрического полей. W = L i 2 / 2 + C u 2 / 2 8 I I
Преобразование энергии в колебательном контуре Конденсатор зарядился заново. Начинается новый цикл. W = C U 2 / 2 9 I I
CU 2 /2 =Cu 2 /2 + Li 2 /2 = LI 2 /2 W эл W м W эл Преобразование энергии в колебательном контуре