Сочетания и их свойства. А-11. Определение: Сочетаниями из m элементов по n элементов в каждом (nm) называются соединения, каждое из которых содержит.

Презентация:



Advertisements
Похожие презентации
Существуют два типа задач, связанных с размещениями: 1) из п элементов составить все возможные размещения по р в каждом; 2) определить сколько различных.
Advertisements

Тема урока: «Размещения» Алгебра 9 класс «Размещения» Лучше в совершенстве выполнить небольшую часть дела, чем сделать плохо в десять раз более. Аристотель.
Размещения. А Размещения В комбинаторике размещением называется расположение «предметов» на некоторых «местах» при условии, что каждое место занято.
Комбинаторика - раздел математики, в котором изучаются вопросы о том, сколько различных комбинаций, подчиненных тем или иным условиям, можно составить.
Элементы комбинаторики. Принцип произведения комбинаций n1n1 n2n2 … nknk … Комбинация элементов n 1 n 2 n k 12 k ШАГИ N = n 1 n 2 … n k.
Подготовила Ученица 9 класса МОУ-СОШ с. Фурманово Дамёткина Лена.
Определение Область математики, в которой изучают комбинаторные задачи, называется комбинаторикой.
УРОК 4. Элементы комбинаторики.. Задачи на непосредственный подсчет вероятностей Комбинаторика изучает количество комбинаций (подчиненное определенным.
Голодникова Алевтина Александровна – преподаватель математики ГБ ПОУ «Экономический колледж» г.Санкт-Петербурга.
Комбинаторные задачи Перестановки РазмещенияСочетания (выборки)
Комбинаторика Размещение и сочитание. Размещение В комбинаторике размещением называется расположение «предметов» на некоторых «местах» при условии, что.
Перестановки При составлении размещений без повторений из n элементов по к мы получили расстановки, отличающиеся друг от друга и составом, и порядком элементов.
Размещение Пусть имеется 4 шара и 3 пустых ячейки. Обозначим шары буквами a, b, c и d. Каждую упорядоченную тройку, которую можно составить из четырех.
Элементы комбинаторики Сочетания. Вопрос дня: КАК РАЗЛИЧАТЬ ПРИМЕНЕНИЕ ТЕОРЕМ?
Элементы комбинаторики. 1.ЧЧто изучает комбинаторика. 2.ППерестановки: a)ЧЧисло перестановок. b)ППример. 3.РРазмещения: a)ЧЧисло размещений. b)ППример.
Автор: к.ф.-м.н., доцент Жанабергенова Г.К.,. 1.Размещение: Это любое упорядоченное подмножество m из элементов множества n. (Порядок расположения элементов.
ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ПРОФЕССИОНАЛЬНОЙ ДЕЯТЕЛЬНОСТИ Теория вероятностей.
Правила комбинаторики Основные понятия алгебра 9 класс Выполнила Гуляева Е.В. учитель математики МОУ ПСШ.
§2. Определители 1. Вспомогательные определения ОПРЕДЕЛЕНИЕ. Пусть n – натуральное число. Факториалом числа n (обозначают: n!) называют произведение натуральных.
Сочетания Сочетания Определение 1 Сочетанием из n элементов по k называется всякая совокупность попарно различных k элементов, выбранных каким-либо способом.
Транксрипт:

Сочетания и их свойства. А-11

Определение: Сочетаниями из m элементов по n элементов в каждом (nm) называются соединения, каждое из которых содержит n элементов, взятых из данных m разных элементов, и которые отличаются одно от другого по крайней мере одним элементом. Обозначают: С- первая буква французского слова combinaison-сочетание Читают « це из эм по эн»

Формула Образуем все соединения, содержащие n элементов, выбранных из данных m разных элементов, без учета порядка их расположения. Число таких соединений Из каждого полученного соединения перестановками его элементов можно образовать Р n =n! соединений, отличающихся одно от другого только порядком расположения его элементов. Получим все размещения из mэлементов по n, число которых равно По правилу произведения число таких соединений равно

Свойства: