Дан куб ABCDA 1 B 1 C 1 D 1 с ребром 1. Найдите расстояние от точки А до плоскости A 1 BТ, где Т - середина отрезка AD. D А В С А1А1 D1D1 С1С1 В1В1 1 1.

Презентация:



Advertisements
Похожие презентации
A А Н А Расстояние от точки до плоскости Расстояние от точки до плоскости – длина перпендикуляра AH. N А B На практике порой опустить перпендикуляр из.
Advertisements

Консультационный центр по подготовке выпускников к Государственной (итоговой) аттестации.
1 Задача С 2 Дан куб ABCDA 1 B 1 C 1 D 1 с ребром 1. Найдите расстояние от вершины А до плоскости А 1 ВТ, где Т – середина ребра AD.
РАССТОЯНИЕ ОТ ТОЧКИ ДО ПЛОСКОСТИ Расстоянием от точки до плоскости в пространстве называется длина перпендикуляра, опущенного из данной точки на данную.
В правильной шестиугольной пирамиде SABCDEF сторона основания АВ = 2, боковое ребро SA =. Найдите расстояние от вершины А до плоскости SBD.7A B D E F 2.
ПОДГОТОВКА к ЕГЭ задача С2. Расстояние между двумя точками. Способы нахождения 1.Как длину отрезка АВ, если отрезок удалось включить в некоторый треугольник.
A А Н А Расстояние от точки до плоскости Расстояние от точки до плоскости – длина перпендикуляра AH. N А B На практике порой опустить перпендикуляр из.
Расстояние от точки до прямой Расстояние от точки до прямой, не содержащей эту точку, есть длина отрезка перпендикуляра, проведенного из этой точки на.
2 В правильной шестиугольной пирамиде SABCDEF, стороны основания которой, равны 1, а боковые ребра равны 2, найдите расстояние от точки C до прямой SF.
РАССТОЯНИЯ В ПРОСТРАНСТВЕ А. Азевич, г. Москва. Определение 1Расстоянием между точками называется длина отрезка, соединяющего эти точки.
Дана правильная четырехугольная пирамида SABCD с вершиной S. Ребро основания пирамиды равно, высота –. Найдите расстояние от середины ребра AD до прямой.
Дан куб АВСDA 1 B 1 C 1 D 1 с ребром 2. Найдите расстояние от середины ребра В 1 С 1 до прямой МТ, где точки М и Т – середины ребер AD и А 1 В 1 соответственно.
Расстояние от проекции первой прямой (т.В) до проекции второй прямой (СВ 1 ) и будет равно длине общего перпендикуляра, т.е. искомому расстоянию. Ребро.
ВЫЧИСЛЕНИЕ РАССТОЯНИЯ ОТ ТОЧКИ ДО ПЛОСКОСТИ. Опр. Расстоянием от точки до плоскости в пространстве называется длина перпендикуляра, опущенного из данной.
Пирамида Пирамидой называется многогранник, который состоит из плоского многоугольника – основания пирамиды, точки, не лежащей в плоскости основания, -
Расстояние от точки до плоскости Напомним, что расстоянием от точки до плоскости называется длина перпендикуляра, опущенного из данной точки на данную.
Автор Сизова Н. В. Расстояние между скрещивающимися прямыми.
Ребро куба ABCDA 1 B 1 C 1 D 1 равно 6. Найдите расстояние от ребра DC до диагонали D 1 B куба. D С 1 С 1 С 1 С 1 D1D1D1D1 А А 1 А 1 А 1 А В В 1.
Методы решения задач на нахождение расстояния между скрещивающимися прямыми Учитель: Шарова С. Г.
УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ Углом между наклонной и плоскостью называется угол между этой наклонной и ее ортогональной проекцией на данную плоскость.
Транксрипт:

Дан куб ABCDA 1 B 1 C 1 D 1 с ребром 1. Найдите расстояние от точки А до плоскости A 1 BТ, где Т - середина отрезка AD. D А В С А1А1 D1D1 С1С1 В1В Опустить перпендикуляр из точки на плоскость не всегда просто. Применим другой способ для вычисления расстояния от точки А до плоскости A 1 BТ. Найдем AO, выразив два раза объем пирамиды ABTA 1 с основанием АВТ T O

D А В С А1А1 D1D1 С1С1 В1В B T H A1A1 5 2 T O

D А В С А1А1 D1D1 С1С1 В1В T O Найдем AO, выразив два раза объем пирамиды ABTA 1 с основанием АВТ.