Дан правильный тетраэдр MABC с ребром 1. Найдите расстояние между прямыми ВL и MO и, где L середина ребра MC, O центр грани ABC. М C В А E N 1 1 2 1 L.

Презентация:



Advertisements
Похожие презентации
D C A B N 60 0 O Дан правильный тетраэдр ABCD с ребром. Найдите расстояние от вершины А до плоскости BDC О – точка пересечения медиан. Применим.
Advertisements

Задачи на нахождение расстояния между скрещивающимися прямыми.
A a II На рисунке две скрещивающиеся прямые a и b. Через каждую из них проведена плоскость, параллельная другой прямой. Отрезки параллельных прямых, заключенные.
В пирамиде DABC все ребра равны. Через О обозначим центр основания АВС, а через К – середину высоты DO пирамиды. Найдите расстояние от точки К до грани.
2 1 В правильном тетраэдре АВСD точка М середина ребра DC. Найдите угол между прямой ВМ и плоскостью АВС. наклонная O D A C B E N проекция Если не дано.
3 20 AC ВN, AC SN АBC ВNS, NM NKнаклонная O S B A C K проекция 10 Угол между наклонной и плоскостью равен углу между наклонной и ее проекцией. N M ? В.
В правильном тетраэдре ABCD найдите угол между высотой тетраэдра DH и медианой BM боковой грани BDC. H D C A B 1 1 M E Заменим DH на параллельную.
Одна из них спроектируется в точку: АC в точку N, а прямая BD в прямую BD, т.к. она лежит в плоскости проекции. В правильной треугольной пирамиде сторона.
Фалес Милетский Древнегреческий ученый (ок. 625 – 547 гг. до н. э.) Если на одной из двух прямых отложить последовательно несколько равных отрезков и через.
В правильном тетраэдре AВСD найдите угол между медианой ВМ грани АВD и плоскостью BCD. D A C B E N M 2 1 Если не дано ребро, то можно обозначить.
Фалес Милетский Древнегреческий ученый (ок. 625 – 547 гг. до н. э.) Если на одной из двух прямых отложить последовательно несколько равных отрезков и через.
Подсказки В правильной четырёхугольной пирамиде MABCD с вершиной M стороны основания равны 3, а боковые рёбра равны 8. Найдите площадь сечения пирамиды.
Урок 1 Угол между прямой и плоскостью. Углом между прямой, не перпендикулярной плоскости и плоскостью называется угол между этой прямой и ее проекцией.
Высота правильной четырехугольной пирамиды SABCD равна 24, а сторона основания равна 12. Найдите расстояние от вершины В до плоскости АСМ, где М – середина.
Одна из них спроектируется в точку: АC в точку N, а прямая BD в прямую BD, т.к. она лежит в плоскости проекции. В правильной треугольной пирамиде боковое.
ПАРАЛЛЕЛЬНЫЕ ПЛОСКОСТИ МЕДИАНА ТРЕУГОЛЬНИКА Две плоскости не имеющие общих точек называются параллельными.
Одна из них спроектируется в точку: АC в точку N, а прямая BD в прямую BD, т.к. она лежит в плоскости проекции. В правильной треугольной пирамиде сторона.
УГОЛ МЕЖДУ ПРЯМЫМИ В ПРОСТРАНСТВЕ Углом между двумя пересекающи- мися прямыми в пространстве называется наименьший из углов, образованных лучами этих прямых.
Параллельность прямой и плоскости. Если две точки прямой лежат в данной плоскости, то вся прямая лежит в этой плоскости. Тогда возможны три случая взаимного.
Наклонная проекция O Дана правильная треугольная пирамида DABC с вершиной D. Ребро основания пирамиды равно, высота –. Найдите расстояние от середины ребра.
Транксрипт:

Дан правильный тетраэдр MABC с ребром 1. Найдите расстояние между прямыми ВL и MO и, где L середина ребра MC, O центр грани ABC. М C В А E N L 2 1 O Расстояние между одной из скрещивающихся прямых и плоскостью, проходящей через другую прямую параллельно первой, называется расстоянием между скрещивающимися прямыми. Построим через прямую BL плоскость, параллельную прямой МО. 2 1 Искомое расстояние равно расстоянию между от прямой МО до параллельной плоскости BNL.H О – точка пересечения медиан. Применим свойство медиан: медианы треугольника пересекаются в отношении 2 к 1, считая от вершины CO : OE = 2 : 1. Вся медиана CE – это 3 части. EО = : 3 = (это 1 часть) CО = : 3 * 2 = (это 2 части) Тогда по теореме Фалеса: если МL=LC, то ON=NC= : 2 =. LN CE MO CE LN II MO

М C B А E N L 2 1 O 2 1 H А C B 2 1 E H 36 NO Треугольники BNE и ONH подобны по двум углам 36