10 Основанием призмы ABCDA 1 B 1 C 1 D 1 является ромб ABCD, AB = 10, ВD = 12. Высота призмы равна 6. Найдите расстояние от центра грани A 1 B 1 C 1 D.

Презентация:



Advertisements
Похожие презентации
Основанием пирамиды SABC является прямоугольный треугольник ABC, C = 90 0, BС = 4, AC = 6, боковое ребро SA перпендикулярно плоскости основания пирамиды.
Advertisements

A А Н А Расстояние от точки до плоскости Расстояние от точки до плоскости – длина перпендикуляра AH. N А B На практике порой опустить перпендикуляр из.
A А Н А Расстояние от точки до плоскости Расстояние от точки до плоскости – длина перпендикуляра AH. N А B На практике порой опустить перпендикуляр из.
В С А В 1 В 1 А 1 А 1 С 1 С 1 Основанием прямой призмы ABCA 1 B 1 C 1 является прямоугольный треугольник АВС с прямым углом С. ВС = 3. Высота призмы равна.
В ромбе угол В тупой. Высота, опущенная из С, пройдет во внешней области фигуры В A D C D А В С А 1 А 1 D1D1 С 1 С 1 Основанием прямой призмы ABCDA.
Ребро куба ABCDA 1 B 1 C 1 D 1 равно 6. Найдите расстояние от ребра DC до диагонали D 1 B куба. D С 1 С 1 С 1 С 1 D1D1D1D1 А А 1 А 1 А 1 А В В 1.
В правильной шестиугольной призме АВСDEFA 1 B 1 C 1 D 1 E 1 F 1 сторона основания равна 1, а высота равна 6. Найдите угол между прямой F 1 В 1 и плоскостью.
D1BD1BD1BD1B 2. Нормаль ко второй плоскости, которую я и строить не берусь… Но по условию это сечение проходит перпендикулярно прямой BD 1. Значит, ВD.
Угол между прямой и плоскостью Суфиярова М.А., учитель математики МОУ СОШ 2 городского округа ЗАТО Светлый Саратовской области.
A a IIa b a b План решения задачи. 1. Через одну прямую проводим плоскость, параллельную второй прямой 2. Вторую плоскость проводим, перпендикулярно к.
Нормальным вектором плоскости (или нормалью плоскости) называют вектор, перпендикулярный данной плоскости.p n.
С D E F А В D1D1D1D1 E1E1E1E1 F1F1F1F1 A1A1A1A1 B1B1B1B C1C1C1C1 В правильной шестиугольной призме АВСDEFA 1 B 1 C 1 D 1 E 1 F 1 все ребра равны.
D N А 1 А 1 А 1 А 1 D 3 4 С 2 С 2 Основанием прямой призмы ABCA 1 B 1 C 1 является равнобедренный треугольник ABC, AB = АC = 5, BC = 6. Высота призмы равна.
Многогранники: типы задач и методы их решения. Домашняя задача В основании прямой призмы АВСА 1 В 1 С 1 лежит прямоугольный равнобедренный треугольник.
A С1С1С1С1 A1A1A1A1 B1B1B1B1 2 B 2 Чтобы найти высоту A 1 K, выразим два раза площадь равнобедренного треугольника BA 1 C 1. K 55С 2H В правильной треугольной.
D C A B 1 1 K Чтобы найти высоту AK, выразим два раза площадь треугольника ABE N 2 1 E В тетраэдре ABCD, все ребра которого равны 1,
Подготовил: учитель математики МОУ «СОШ 10 с. Солдато- Александровского» Кобзев Д.А – 2013 уч.г. (Расстояние от точки до плоскости)
Шабанов Никита. -направляющие вектора прямых а b.
ПОДГОТОВКА к ЕГЭ задача С2. Расстояние между двумя точками. Способы нахождения 1.Как длину отрезка АВ, если отрезок удалось включить в некоторый треугольник.
Расстояние от точки до плоскости C ученица 11 «Б» Петрянкина Анастасия ГБОУ СОШ 145 г.Санкт-Петербург Учитель Эмануэль Н.Ю.
Транксрипт:

10 Основанием призмы ABCDA 1 B 1 C 1 D 1 является ромб ABCD, AB = 10, ВD = 12. Высота призмы равна 6. Найдите расстояние от центра грани A 1 B 1 C 1 D 1 до плоскости BDC D A B C A1A1 D1D1 C1C1 O СK – искомое расстояние. Обоснуем. Плоскость BDC 1 проходит через перпендикуляр DB к плоскости АCС 1, значит, эти плоскости перпендикулярны. OC 1 – линия пересечения плоскостей. CK ACC 1 CK BDC 1 K B1B1 С CK OC 1 (линия пересечения плоскостей)10

10 Основанием призмы ABCDA 1 B 1 C 1 D 1 является ромб ABCD, AB = 10, ВD = 12. Высота призмы равна 6. Найдите расстояние от центра грани A 1 B 1 C 1 D 1 до плоскости BDC D A B A1A1 D1D1 C1C1 O B1B1 K С CK – перпендикуляр к плоскости BDC 1, искомое расстояние, которое легко найти, выразив два раза площадь треугольника OCC C 88