В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, найдите тангенс угла между плоскостями SAD и SBD. B D S A 1 C 1 1 О K 2 По обратной.

Презентация:



Advertisements
Похожие презентации
Высота правильной четырехугольной пирамиды SABCD равна 24, а сторона основания равна 12. Найдите расстояние от вершины В до плоскости АСМ, где М – середина.
Advertisements

O S A CB 1 1 D Угол между наклонной и плоскостью равен углу между наклонной и ее проекцией. K наклонная проекция M BM BK B M ? 22 В правильной.
В основании четырехугольной пирамиды SABCD лежит квадрат ABCD со стороной. Длины всех боковых ребер равны 3, точка М – середина ребра AS. Через прямую.
3 20 AC ВN, AC SN АBC ВNS, NM NKнаклонная O S B A C K проекция 10 Угол между наклонной и плоскостью равен углу между наклонной и ее проекцией. N M ? В.
По условию плоскость АВК перпендикулярна ребру РС, значит, РС будет перпендикулярно любой прямой лежащей в плоскости АВК. 8 Р A B 8 Основанием правильной.
1часть В правильной четырехугольной пирамиде SABCD с основанием ABCD сторона основания равна 3, а боковое ребро равно 5. Найдите угол между плоскостями.
А Угол между наклонной и плоскостью Угол между наклонной и плоскостью равен углу между наклонной и её проекцией. На практике порой опустить перпендикуляр.
УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ Углом между наклонной и плоскостью называется угол между этой наклонной и ее ортогональной проекцией на данную плоскость.
Фалес Милетский Древнегреческий ученый (ок. 625 – 547 гг. до н. э.) Если на одной из двух прямых отложить последовательно несколько равных отрезков и через.
1 1 1 А В С 1 С 1 А 1 А 112 В 1 В 1 С В правильной треугольной призме ABCА 1 В 1 С 1, все ребра которой равны 1, найдите угол между плоскостями AСВ 1 и.
Журнал «Математика» 3/2012 Метод ортогонального проектирования Задание С2.
2 1 В правильном тетраэдре АВСD точка М середина ребра DC. Найдите угол между прямой ВМ и плоскостью АВС. наклонная O D A C B E N проекция Если не дано.
4 В правильной треугольной пирамиде сторона основания равна 4, а боковое ребро 3. Найдите расстояние от стороны основания до противоположного бокового.
Фалес Милетский Древнегреческий ученый (ок. 625 – 547 гг. до н. э.) Если на одной из двух прямых отложить последовательно несколько равных отрезков и через.
A b a b Если две скрещивающиеся прямые перпендикулярны, то легко построить общий перпендикуляр. a b 1. Через одну прямую ( a ) проводим плоскость, перпендикулярную.
Угол в пространстве Углом в пространстве называется фигура, образованная двумя лучами с общей вершиной и одной из частей плоскости, ограниченной этими.
Решение С 2 (вариант 5) из диагностической работы за г.
Савухиной Олеси 11 «б» Определение пирамиды Определение правильной пирамиды Строение пирамиды Тетраэдр Усеченная пирамида Формулы Задачи.
УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ Углом между наклонной и плоскостью называется угол между этой наклонной и ее ортогональной проекцией на данную плоскость.
УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ Углом между наклонной и плоскостью называется угол между этой наклонной и ее ортогональной проекцией на данную плоскость.
Транксрипт:

В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, найдите тангенс угла между плоскостями SAD и SBD. B D S A 1 C 1 1 О K 2 По обратной теореме Пифагора BSD прямоугольный, S – прямой. Опустим перпендикуляр на ребро двугранного угла из точки О: ОК II BS. Т.к. BS SD, то OK SD.D S B K O OK II BS OB = OD SK = KD По теореме Фалеса: АК – медиана. SAD – равносторонний, значит, АК является и высотой.1 Если прямая перпендикулярна двум пересекающимся прямым лежащим в плоскости, то прямая перпендикулярна этой плоскости. Если прямая перпендикулярна плоскости, то она перпендикулярна любой прямой, лежащей в этой плоскости. АО BD, АО SOАО SBD АО OK, т.к. OK SBD 2 2 Просят найти тангенс, значит нам нужны катеты треугольника: OK =, т.к. ОК – средняя линия треугольника SBD. BD = AC = Тогда OA =