С2 С2. В правильной шестиугольной призме А…F 1 все ребра которой равны 1 найдите угол между прямыми АВ 1 и ВЕ 1. А B C D E F А1А1А1А1 B1B1B1B1 C1C1C1C1.

Презентация:



Advertisements
Похожие презентации
1. 1. В правильной шестиугольной призме АВСDEFA 1 B 1 C 1 D 1 E 1 F 1, все ребра которой равны 1, найдите расстояние от точки С до прямой F 1 E 1. B C.
Advertisements

Мультимедийное пособие «Решаем С2 ЕГЭ» Разработала: Куракова Е. В., учитель математики МБОУ СОШ с УИОП 38 им. Е. А. Болховитинова, Лукина Мария, 11 « В.
Взаимное расположение прямых в пространстве. Угол между скрещивающимися прямыми. Стереометрия.
Угол между двумя прямыми. В правильной шестиугольной призме ABCDEFABCDEF, все ребра которой равны 1, F ED C B A F D C BA найдите косинус угла между прямыми.
Применение векторно- координатного метода решения геометрических задач. Угол между прямой и плоскостью.
-направляющие вектора прямых а b х у z 1. В правильной шестиугольной призме все ребра равны 1. Найдите косинус угла между прямыми АВ 1 и ВF 1 F 1 (-
Задания С 2 Выполнила ученица 11 «Э» класса Галимова Алина.
Решите задачу Вычислите скалярное произведение двух векторов, если они имеют координаты {1; 2; 3}, {-1; -2; -3}.
Дано: а, b – прямые Найти: - угол между прямыми, - угол между векторами,
Скалярным произведением двух векторов называется произведение их длин на косинус угла между ними. Скалярное произведение нулевых векторов равно нулю тогда.
Угол между прямыми a b Пусть - тот из углов, который не превосходит любой из трех остальных углов. Тогда говорят, что угол между пересекающимися прямыми.
T AB C M 1 K O1O1O1O1 В правильной четырехугольной пирамиде АВСMT со стороной основания а=4 и высотой ТО 1 = h =1. Найдите косинус угла между прямыми ОТ.
Сторона основания правильной треугольной призмы ABCA 1 B 1 C 1 равна 8. Высота этой призмы равна 6. Найти угол между прямыми CA 1 и АВ 1. C B1B1 A 8 60.
«Метод решения хорош, если с самого начала мы можем предвидеть – и далее подтвердить это, - что, следуя этому методу, мы достигнем цели.» Г. Лейбниц.
Метод координат в задачах С2 Стереометрия. Угол между прямыми - направляющий вектор прямой а - направляющий вектор прямой b - угол между прямыми.
Решение стереометрических задач методом координат.
1 Подготовка к ЕГЭ Задания С 2. Углом между наклонной и плоскостью называется угол между этой наклонной и ее проекцией на данную плоскость. Прямая, перпендикулярная.
С 2 С 2. В правильной шестиугольной призме АВСDEFA 1 B 1 C 1 D 1 E 1 F 1, все ребра которой равны 1, найдите расстояние от точки С до прямой F 1 E 1. B.
Урок 1 Угол между прямой и плоскостью. Углом между прямой, не перпендикулярной плоскости и плоскостью называется угол между этой прямой и ее проекцией.
УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ Углом между наклонной и плоскостью называется угол между этой наклонной и ее ортогональной проекцией на данную плоскость.
Транксрипт:

С2 С2. В правильной шестиугольной призме А…F 1 все ребра которой равны 1 найдите угол между прямыми АВ 1 и ВЕ 1. А B C D E F А1А1А1А1 B1B1B1B1 C1C1C1C1 D1D1D1D1 E1E1E1E1 F1F1F1F способ

В правильной шестиугольной призме А…F 1 все ребра которой равны 1 найдите угол между прямыми АВ 1 и ВЕ 1. А B C D E F А1А1А1А1 B1B1B1B1 C1C1C1C1 D1D1D1D1 E1E1E1E1 F1F1F1F А B D E А1А1А1А1 D1D1D1D1 E1E1E1E1 B1B1B1B1 А1А1А1А1 B1B1B1B1 B A E1E1E1E1 DE D1D1D1D1 наклонная проекция TTП АВ 1 ВА 1 П-я AB 1 ВЕ 1 Н-я 1 способ

В правильной шестиугольной призме А…F 1 все ребра которой равны 1 найдите угол между прямыми АВ 1 и ВЕ 1. А B C D E F А1А1А1А1 D1D1D1D1 E1E1E1E1 F1F1F1F х yz1 1 FEА ? (0;0;1) ( ;0;0) ( ;1;0) B1B1B1B1 C1C1C1C1 ( ;1;1)

Косинус угла между ненулевыми векторами и выражается формулойab cos cos = x 1 x 2 + y 1 y 2 + z 1 z 2 x y z 1 2 x y z 2 2 x y z 2 2