k = f (x o ) = tg α – это угловой коэффициент касательной. k = f (x o ) = tg α – это угловой коэффициент касательной. f(x o ) к графику дифференцируемой.

Презентация:



Advertisements
Похожие презентации
Приложения производной Алгебра и начала математического анализа 10 класс ГБОУ СОШ 1716 Учитель Егорова Г.В.
Advertisements

Повторение D(f)= E(f)= y=0 при х= y>0 при х y0, a1.
Что называется функцией? Если каждому значению переменной Х из некоторого множества D соответствует единственное значение переменной У, то такое.
Свойства функций Область определения, множество значений, четность, нечетность, периодичность.
Применение производной для исследования функций. 1. Нахождение промежутков возрастания функции. 2. Нахождение промежутков убывания функции. 3. Нахождение.
Применение производной к исследованию функций. Достаточное условие возрастания функции Если в каждой точке интервала (a, b) f'(x)>0, то функция f(x) возрастает.
Исследование функций на четность, монотонность, экстремумы с помощью графиков функций и графиков их производных.
Сухорукова Е.В. МБОУ «Борисовская СОШ 2». Функция y = f(x) определена на промежутке (- 8; 2). На рисунке изображен график ее производной. Найдите точку.
Найти область определения функции Исследовать функцию на чётность, нечётность и периодичность Найти нули функции (точки пересечения графика функции с.
Графическое исследование тригонометрических функций.
Исследование тригонометрических функций
x y y x Если функция возрастает, то производная положительна Если функция убывает, то производная отрицательна.
Чем дальше в лес, тем больше…. Цели проекта: Научиться применять производную к исследованию функции. Задачи проекта: Составление уравнения касательной.
Тема: «Применение производной к исследованию функции»
11 класс экстернат. Производная Производной функции f в точке х0 называется число, к которому стремится разностное отношение при Δх, стремящемся к нулю.
ВОЗРАСТАНИЕ ФУНКЦИЙ Функция называется возрастающей на интервале, если большему значению аргумента из этого интервала соответствует большее значение функции,
Приложение производной к исследованию функции. План I. Исследование функции на монотонность: 1. Определение монотонности 2. Необходимый и достаточный.
Презентация к уроку «Свойства функций» Галушка Ирина Ивановна учитель математики ГБОУ СПО «Псковский политехнический колледж»
Физический смысл производной Содержание Основные формулы дифференцирования Производная элементарных функций Геометрический смысл Правила дифференцирования.
…Математические сведения могут применяться умело и с пользой в том случае, если они усвоены творчески, так, что учащийся видит, как можно было бы прийти.
Транксрипт:

k = f (x o ) = tg α – это угловой коэффициент касательной. k = f (x o ) = tg α – это угловой коэффициент касательной. f(x o ) к графику дифференцируемой в точке х 0 функции f – это прямая, проходящая через точку (х о ; f(x о )) и имеющая угловой коэффициент f(х о ). х у хохо y = kx + b α α y = f(x) 0

y = f (x o )(x – x o ) + f(x o ) 1 о Находим значение функции в точке х о : f(x o ). 2 о Дифференцируем функцию: f(x). 3 о Находим значение производной в точке х о : f(x o ). 4 о Подставляем эти данные в общее уравнения касательной: y = f(x o )(x – x o ) + f(x o ).

f(x) f(x o ) + f (x o )x (1) 1 + x (2) (1 + x) n 1 + nx (3)

1) Если f(x) > 0 внутри промежутка I, то функция f возрастает на этом промежутке. 2) Если f(x) < 0 внутри промежутка I, то функция f убывает на этом промежутке. 3) Если f(x) = 0 внутри промежутка I, то функция f постоянна на этом промежутке. Примеры: 1 о f(x) = 3x 3 + 4x f (x) = 9x > 0 f(x) возрастает при х R 2 о f(x) = – 2x 5 – 6x f (x) = – 10x 4 – 6 < 0 f(x) убывает при х R 3 о f(x) = 12 f (x) = 0 f(x) постоянна при х R

xoxo Точка х о называется точкой максимума функции f(x), если существует такая окрестность точки х о, что для всех х х о из этой окрестности выполняется неравенство f(x)< f(x o ). Если в точке х о производная функции f(x) меняет знак с «+» на «–», то х о – точка локального максимума функции f(x). f(x) + + – – x max f(x о ) – максимум функции

f(x) xoxo Точка х о называется точкой минимума функции f(x), если существует такая окрестность точки х о, что для всех х х о из этой окрестности выполняется неравенство f(x)> f(x o ). Если в точке х о производная функции f(x) меняет знак с «–» на «+», то х о – точка локального минимума функции f(x). f(x) – – + + x min f(x о ) – минимум функции

1 о Дифференцируем функцию: f(x). 2 о Находим критические точки из уравнения: f(x) = 0. 3 о Решаем неравенства: f(x) > 0 и f(x) < 0. 4 о Полученные данные изображаем на схеме: 5 o a) Промежутки возрастания: (– ; х 1 ]; [x 2 ; x 3 ]. б) Промежутки убывания: [x 1 ; x 2 ]; [x 3 ; + ). f(x) x2x2 – – + + x + + – – x1x1 x3x3

1 о Дифференцируем функцию: f(x). 2 о Находим критические точки из уравнения: f(x) = 0. 3 о Решаем неравенства: f(x) > 0 и f(x) < 0. 4 о Полученные данные изображаем на схеме: 5 o a) х 1 ; x 3 – точки максимума; x 2 – точка минимума. б) f(x 1 ); f(x 3 ) – максимумы функции; f(x 2 ) – минимум функции. f(x) x2x2 – – + + x + + – – x1x1 x3x3

1.Находим область определения функции D(f) и множество ее значений Е(f). 2.Определяем четность (нечетность), периодичность функции. 3.Находим точки пересечения с осями координат из условий: (0; f(0)) и f(x)= 0. x 01 ; x 02 ; x 03 ; … 4. Находим промежутки знакопостоянства, решая неравенства f(x) > 0 и f(x) < 0. 5.Дифференцируем функцию: f(x). 6. Находим критические точки из уравнения: f(x) = 0.

f(x) x2x2 – – + + x + + – – x1x1 x3x3 7. Решаем неравенства: f(x) > 0 и f(x) < 0. 8.Полученные данные изображаем на схеме: 9.Указываем промежутки монотонности функции а) промежутки возрастания: (– ; х 1 ]; [x 2 ; x 3 ]; б) промежутки убывания: [x 1 ; x 2 ]; [x 3 ; + ).

10. Определяем точки экстремума и сами экстремумы функции: a) х 1 ; x 3 – точки максимума; x 2 – точка минимума. б) f(x 1 ); f(x 3 ) – максимумы функции; f(x 2 ) – минимум функции. 11. Изображаем все полученные данные в системе координат, строим график функции y = f(x).

x1x1 x1x1 x2x2 x2x2 x3x3 x3x3 x у 0 f(x 2 ) f(x 1 ) f(x 3 ) f(0) x 01 x 02 x 04 x 03 х 01 ; x 02 ; x 03 ; x 04 ; f(0) – точки пересечения с осями (х 1 ; f(x 1 )); (х 2 ; f(x 2 )); (х 3 ; f(x 3 )) – точки экстремумовЧерез данные точки проводим плавную кривую

1 о Выясняем существование функции на данном отрезке [a; b]. 2 о Дифференцируем функцию: f(x). 3 о Находим критические точки из уравнения: f(x) = 0. 4 о Отбираем те точки, которые принадлежат заданному промежутку [a; b]. 5 о Находим значение функции в этих точках и на концах промежутка: f(a); f(b); f(x 1 ); f(x 2 ); и т. д. 6 о Выбираем среди полученных значений наибольшее или наименьшее.