Презентация делал 10 класс школы ГБОУ СОШ класс
Кроссворд
1 К6 А24 С А7 Т3 Е5 Л Ь Н А Я
Кроссворд 1 К6 А2 К4 С И А Н7 Т Е3 Е М5 Л А Ь Т Н И А К Я А
Кроссворд 1 К6 А2 К4 С И А Н7 Т Е3 А Е М Р5 Л А Г Ь Т У Н И М А К Е Я А Н Т
Кроссворд 1 К6 А2 К4 Н С И Е А Н П7 Т Е3 А Р Е М Р Е5 Л А Г Р Ь Т У Ы Н И М В А К Е Н Я А Н А Т Я
Кроссворд 1 К6 А2 К4 Н С И Е А Н П7 Т Е3 А Р Е М Р Е5 Р Л А Г Р А Ь Т У Ы Б Н И М В О А К Е Н Т Я А Н А А Т Я
Кроссворд 1 К6 У А2 К4 Н С С И Е К А Н П О7 Т Е3 А Р Р Е М Р Е5 Р Е Л А Г Р А Н Ь Т У Ы Б И Н И М В О Е А К Е Н Т Я А Н А А Т Я
Кроссворд 1 К6 У А2 К4 Н С С И Е К А Н П О7 С Т Е3 А Р Р Л Е М Р Е5 Р Е О Л А Г Р А Н Ж Ь Т У Ы Б И Н Н И М В О Е А А К Е Н Т Я Я А Н А А Т Я
Кроссворд 1 К6 У А2 К4 Н С С И Е К А Н П О7 С Т Е3 А Р Р Л Е М Р Е5 Р Е О Л А Г Р А Н Ж Ь Т У Ы Б И Н Н И М В О Е А А К Е Н Т Я Я А Н А А Т Я
Лагранж В 19 лет он стал профессором в Артиллерийской школе Турина. Именно Лагранж в 1791 г. ввёл термин «производная», ему же мы обязаны и современным обозначением производной (с помощью штриха). Термин «вторая производная» и обозначение(два штриха) также ввёл Лагранж
СИСТЕМАТИЗИРУЕМ ЗАДАЧИ ПО ТЕМЕ!!! 1. Умение дифференцировать. применять правила дифференцирования таблицу производных 2. Применение геометрического смысла производной. 3. Применение физического смысла производной.
Формулы дифференцирования Функция y = kx+m линейная y = x n степенная y = y = обратная пропорциональность y = sin x y = cos x y = tg x y = ctg x y = C постоянная Производная y / = k y / = n x n-1 y / = y / = cos x y / = - sin x y / = y / =0
САМОПРОВЕРКА!!! Найдите производные функций. 1
САМОПРОВЕРКА!!! 2
ЗНАНИЕ ТЕОРИИ ОБЯЗАТЕЛЬНО!!! f '(x) = tg α = к значение производной в точке Х значение производной в точке Х тангенс угла наклона касательной к положительному направлению оси ОХ тангенс угла наклона касательной к положительному направлению оси ОХ угловой коэффициент касательной угловой коэффициент касательной
0 1 y 1 x y=f(x) x0x0 1. На рисунке изображен график функции y=f(x) и касательная к нему в точке с абсциссой x 0. Найдите значение производной в точке x 0. тупой тупой tg α
y=f(x) 0 1 y 1 x x0x0 2. На рисунке изображен график функции y=f(x) и касательная к нему в точке с абсциссой x 0. Найдите значение производной в точке x 0. острый острый tg α>0, f '(x 0 )>0 31 tg α = 3/1 = = 3 = f '(x 0 )
0 1 y 1 x x0x0 3. На рисунке изображен график функции y=f(x) и касательная к нему в точке с абсциссой x 0. Найдите значение производной в точке x 0. = 0 = 0 tg α = 0 f '(x 0 ) = 0 Касательнаяпараллельна оси ОХ.
Угловой коэффициент касательной равен. Угловой коэффициент касательной равен Найдите угловой коэффициент касательной, проведенной к графику функции в точке с абсциссой. Решение. f '(x) = tg α = к к =к =к =к =
0 t, с Vx,Vx, v t v1xv1x v0xv0x t
0 t, с Vx,Vx, v t v0xv0x
. Δх – изменение координаты тела Δt – промежуток времени, в течение которого выполнялось движение
1. Материальная точка движется по закону (м). В какой момент времени (с) скорость точки будет равна 12,8 м/c ? Решение. х (t) V(t) t = 2,2 (с).
2. Материальная точка движется по закону (м). Чему равно ускорение (м/с 2 ) в момент времени t ? Решение. V (t) a(t) Ускорение равно1 (м/с 2 ). Ускорение равно 1 (м/с 2 ). a(t) = x (t)
Дальнейших успехов в достижении поставленной цели !!! Ку-ку!!!!! Ку-ку!!!!! К ЭКЗАМЕНУ СЛЕДУЕТ ГОТОВИТЬСЯ ОЧЕНЬ СЕРЬЕЗНО !!!