Дифференцирование в пакете Maple. >diff(f, x1, x2,..., xn), где f- функция, x1,x2,…,xn-переменные > diff(sin(x),x); cos (x) >diff(f,x$n),где n-порядок.

Презентация:



Advertisements
Похожие презентации
1 Лекция 10 ТЕХНОЛОГИИ РАБОТЫ С СИСТЕМОЙ КОМПЬЮТЕРНОЙ МАТЕМАТИКИ MAPLE План лекции Решение уравнений Решение систем уравнений Решение неравенств Интегрирование.
Advertisements

Cистема аналитических вычислений MAPLE Введение. Что представляет собой Waterloo Maple? Калькулятор «Машина» символьной математики Среда для решения математических.
Дифференциальное исчисление функций многих переменных Частные производные >diff(f,x1$n1,x2$n2,…, xm$nm), где x1,…, xm – переменные, по которым производится.
НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ, ЕГО СВОЙСТВА И ВЫЧИСЛЕНИЕ.
Ряды и произведения sum(expr, n=a..b), где expr – выражение, зависящее от индекса суммирования, a..b – пределы индекса суммирования, Если требуется вычислить.
Лекция 2 I.1 Переменные. Константы Переменные могут быть буквами греческого алфавита α – alpha Α - Alpha γ – gamma Γ - Gamma λ – lambda Λ - Lambda θ –
Ряды Фурье Общий вид процедуры (стандартный синтаксис): > name:=proc(var1, var2, …) local vloc1, vloc2,…; > expr1; > expr2; > exprn; > end;
Первообразная Интеграл. Понятие первообразной Функцию F(x) называют первообразной для функции f(x) на интервале (a; b), если на нем производная функции.
Первообразная Интеграл МОУ СОШ 5 – «Школа здоровья и развития» г. Радужный Автор: Елена Юрьевна Семёнова.
Неопределенный интеграл Лекция7Элементы интегрального исчисления 1.Первообразная и неопределенный интеграл 2.Основные приемы вычисления неопределенных.
Неопределенный интеграл Лекция7. Элементы интегрального исчисления 1.Первообразная и неопределенный интеграл 2.Основные приемы вычисления неопределенных.
Лекция 4. Тема: «Дифференциал и интеграл» Специальность: «Сестринское дело» Курс: 2 Дисциплина: «Математика» Подготовила: преподаватель высшей категории.
Определение: функция F называется первообразной для функции f на заданном промежутке, если для всех x из этого промежутка F (x) = f (x). F (x) = f (x).
Определенный интеграл продолжение. План лекции: I.Замена переменной в определенном интеграле. II.Приложения определенного интеграла. III.Функции нескольких.
Неопределённый интеграл.. Первообразная. Задача дифференциального исчисления: по данной функции найти её производную. Задача интегрального исчисления:
Несобственный интеграл: понятие, виды, признаки сходимости/расходимости Преподаватель кафедры математического моделирования в экономике Сошникова Е. М.
Классная работа.. Обобщить и систематизировать знания по теме «Первообразная»; Проведение тестирования с целью проверки знаний учащихся ; Изучить формулы.
1 Неопределённый интеграл 1 Неопределённый интеграл Функция F (x) называется первообразной для функции f (x) в промежутке a < x < b, если в любой точке.
Sin37 0 cos7 0 cos37 0 sin7 0 Cos 40 0 Cos 5 0 sin40 0 sin5 0.
Устный счет Устный счет. Задание: Определите, какая функция должна быть в скобках, чтобы выполнялось равенство: ( ) =4 ( ) = sin x ( ) =cosx ( ) =0 4х.
Транксрипт:

Дифференцирование в пакете Maple

>diff(f, x1, x2,..., xn), где f- функция, x1,x2,…,xn-переменные > diff(sin(x),x); cos (x) >diff(f,x$n),где n-порядок вычисляемой производной > diff(sin(x),x$3);-cos(x)

отложенного исполнения – Diff(f,x), где параметры команды такие же, как и в предыдущей. Для упрощения можно использовать команды simplify, factor или expand, в зависимости от того, в каком виде вам нужен результат.

Примеры 1.Вычислить производную > diff(5^(2^(3^(x))),x); 2.Вычислить производную > diff(ln(x)^(1/x^2),x);

3.Вычислить производную 4.Вычислить >Diff(exp(x)*(x^2-1),x$24)= diff(exp(x)*(x^2- 1),x$24): collect(%,exp(x)); > implicitdiff(x^2/2+y^2/4=1,y(x),x);

Интегрирование в пакете Maple Неопределенный интеграл f ( x)dx вычисляется с помощью 2-х команд: 1) прямого исполнения – int(f, x), где f – подынтегральная функция, x – переменная интегрирования; 2) отложенного исполнения – Int(f, x) – где параметры команды такие же, как и в команде прямого исполнения int. Команда Int выдает на экран интеграл в аналитическом виде математической формулы.

Для вычисления определенного интеграла в командах int и Int добавляются пределы интегрирования, например, > Int((1+cos(x))^2, x=0..Pi)= int((1+cos(x))^2, x=0..Pi);

Если в команде интегрирования добавить опцию continuous: int(f, x, continuous), то Maple будет игнорировать любые возможные разрывы подынтегральной функции в диапазоне интегрирования. Это позволяет вычислять несобственные интегралы от неограниченных функций. Несобственные интегралы с бесконечными пределами интегрирования вычисляются, если в параметрах команды int указывать, например, x=0..+infinity. Численное интегрирование выполняется командой evalf(int(f, x=x1..x2), e), где e – точность вычислений (число знаков после запятой).

Примеры 1.Наи ̆ ти неопределенные интегралы: cosxcos2xcos3xdx ; > Int(cos(x)*cos(2*x)*cos(3*x),x)= int(cos(x)*cos(2*x)*cos(3*x), x); >Int((3*x^4+4)/(x^2*(x^2+1)^3),x)= int((3*x^4+4)/(x^2*(x^2+1)^3),x);

Наи ̆ ти определенные интегралы > assume (a>0); assume (b>0); > Int(sin(x)*cos(x)/(a^2*cos(x)^2+b^2*sin(x)^2), x=0..Pi/2)=int(sin(x)*cos(x)/(a^2*cos(x)^2+b^ 2 * sin(x)^2),x=0..Pi/2);