Проверка домашнего задания Приведите различные примеры графических информационных моделей. Приведите различные примеры графических информационных моделей. Графическая модель вашей квартиры. Что это: карта, схема, чертеж? Графическая модель вашей квартиры. Что это: карта, схема, чертеж? Какая форма графической модели (карта, схема, чертеж, график) применима для отображения процессов? Приведите примеры. Какая форма графической модели (карта, схема, чертеж, график) применима для отображения процессов? Приведите примеры.
Динамическое моделирование
Практическая работа «Построение и исследование компьютерной модели, реализующей анализ результатов измерений и наблюдений с использованием системы программирования»
Исследование физических моделей
Содержательная постановка задачи В процессе тренировок теннисистов используются автоматы по бросанию мячика в определенное место площадки. Необходимо задать автомату необходимую скорость и угол бросания мячика для попадания в площадку определенного размера, находящуюся на известном расстоянии.
Величины V0-начальная скорость V0-начальная скорость A- угол броска A- угол броска S- расстояние до площадки S- расстояние до площадки L- длина площадки L- длина площадки Х, У- координаты мячика Х, У- координаты мячика T- время T- время
Качественная описательная модель мячик мал по сравнению с Землей, поэтому его можно считать материальной точкой; мячик мал по сравнению с Землей, поэтому его можно считать материальной точкой; изменение высоты мячика мало, поэтому ускорение свободного падения можно считать постоянной величиной g=9,8 м/с 2 и движение по оси Y можно считать равноускоренным; изменение высоты мячика мало, поэтому ускорение свободного падения можно считать постоянной величиной g=9,8 м/с 2 и движение по оси Y можно считать равноускоренным; скорость бросания тела мала, поэтому сопротивлением воздуха можно пренебречь и движение по оси X можно считать равномерным. скорость бросания тела мала, поэтому сопротивлением воздуха можно пренебречь и движение по оси X можно считать равномерным.
Математическая модель x = v0· cosα·t y = v0· sinα· t – g· t 2 /2 v0· sinα· t – g· t 2 /2 = 0 t· (v0· sinα – g· t/2) = 0 v0· sinα – g· t/2 = 0 t = (2· v0· sinα)/g x = (v0· cosα· 2· v0·sinα)/g = (v0 2 · sin2α)/g S x S+L – «попадание» Если х S+L, то это означает "перелет".
Компьютерная модель на языке Паскаль Компьютерная модель на языке Паскаль program s1; uses graph; {подключение графического модуля} uses graph; {подключение графического модуля} var g, V0, A, t: real; var g, V0, A, t: real; gr, gm, S, L, x, i, y: integer; gr, gm, S, L, x, i, y: integer;
Компьютерная модель на языке Турбо Паскаль Компьютерная модель на языке Турбо Паскаль begin g:=9.8; g:=9.8; readln (v0, a, S, L); gr:=detect; initgraph(gr,gm,''); {вызов процедуры GRAPH} line(0,200,600,200);{чертим ось ох} line(0,0,0,600);{чертим ось оу} setcolor(3);{устанавливаем голубой цвет} line(S*10,200,(S+L)*10,200);{чертим площадку}
Компьютерная модель на языке Турбо Паскаль Компьютерная модель на языке Турбо Паскаль while t
Компьютерная модель на языке Турбо Паскаль Компьютерная модель на языке Турбо Паскаль x:=round(v0*v0*sin(2*a*3.14/180)/g); if x S+L then outtextxy(500,100,'perelet') else outtextxy(500,100,'popal'); {записываем результат полёта} readln;closegraph;end.
Компьютерный эксперимент При начальной скорости 17, расстоянии до площадки 25, размере площадки 2 найти диапазон углов при которых мяч попадает в площадку. V0=17, S = 25, L = 2 Диапазоны от 29° до 34° и от 57° до 61°