Basis of weather condition forecast for reducing meteopatic reactions of the population www.weatherlab.ru S.V.Tkachuk 1,2,K.G.Rubinshtein 1, A.A.Makosko.

Презентация:



Advertisements
Похожие презентации
Weather and climate of Belarus. What is the climate of the weather? Weather - is the state of the atmosphere in this location at a certain time or for.
Advertisements

COLLABORATIVE EXPERIMENTAL STUDIES OF SPACE WEATHER CHANGES INFLUENCE ON HUMAN HEALTH STATE IN DIFFERENT LATITUDES AND LONGITUDES O.V.Khabarova*, M.V.Ragoulskaya**,
Change in the weather and climate in the world. Changing weather and climate are variations in the Earth's climate as a whole or of its separate regions.
Влияние климата на организм человека. Презентация на английском.
Answer the questions: 1.What is climate? Climate is the weather a certain place has over a certain period of time. 2. Is the climate always the same in.
Nature is under Threat. Picture Dictation Global Warming.
Global Warming Z.Dobish, the teacher of English. Global warming is an increase in average global temperatures.
And the result of it Peoples kills Fact 1 Last winter (December February 2007) became the warmest one for the North hemisphere since Moreover.
Correlation. In statistics, dependence refers to any statistical relationship between two random variables or two sets of data. Correlation refers to.
What is it The greenhouse effect is the absorption of energy radiated from the Earth's surface by carbon dioxide and other gases in the atmosphere, causing.
The Weather Prezentacii.com. What can the weather be like ? Good Bad Cold Frosty Hot Rainy Wet Windy Sunny Warm Dry Cloudy Terrible Nasty Fine Snowy Foggy.
Time-Series Analysis and Forecasting – Part IV To read at home.
Ionospheric model. Introduction Because of the complicated nature of the ionosphere, there have been numerous approaches for ionospheric modeling. In.
The territory of the country is 207,560 square km. It stretches from west to east km, from north to south km. In size, the Republic occupies.
Chap 8-1 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chapter 8 Estimation: Single Population Statistics for Business and Economics.
1 Algorithms of time compression and analysis of formed patterns in autonomous adaptive control systems Mazur Yuri, Zhdanov Alexander Lebedev Institute.
Environmental influences on the formation of morphological and adaptive features in adolescences living in different districts of Vladivostok. Кафедра.
Russia renders a great influence on ecological conditions and development in Europe and on the planet. On its territory there are more than 20 % of world's.
Cooperation activities of the International Federation for Peace and Conciliation with partner organizations Presentation by Victor Kamyshanov, president.
Menu PollutionGlobalWarmingAnimalsWasteEnergy.
Транксрипт:

Basis of weather condition forecast for reducing meteopatic reactions of the population S.V.Tkachuk 1,2,K.G.Rubinshtein 1, A.A.Makosko 2 Hydrometorological Research Centre of Russian Federation ²A.M. Obukhov Institute of Atmospheric Physics (RAS)

Heat-waves Cold waves Floods Changing weather… Obvious need for a predictive system of comprehensive measure of the meteorological parameters influence on the health Heavy rains

Some indexes used in the global bio-meteorological practice Temperature+wind - severity of the weather (Bodman ) Russia - wind cooling index (Wind_chill) USA Temperature+humidity+wind Temperature+humidity+wind - apparent temperature AT (USA, France,China) - equivalent-effective temperature EET (Russia) - apparent temperature (Australia) … Temperature + humidity - Effective temperature ( EТ) Russia - Heat index (USA) … +solar radiation Heat stress index (USA) +cloudiness +pressure index of the pathogenicity (Russia) radiant-equivalent-effective temperature temperature (Russia)

Heat Stress Index Website:

Интегральный индекс патогенности погоды The integral index of the pathogenicity of weather [Поволоцкая Н.П., ] ИФА РАН Северокавказское метеоагенство метеоагенство Институткурортологии г. Пятигорск МинеральныеВоды Пятигорск Кисловодск Ессентуки Железноводск Гидрометцентр Ki= П [k1 (ЭЭT) + k2 (ΔTмс) + k3 (ΔTкн) +k4 (ΔТвс) + k5 (Δ Pмс) + k6 (Δ Pкн)+ + k7 (V) + k8 (N) + k9 (UVI) + k10 (e+ЭЭT) + k11 ( f ) + k12 (O2) + k13 (осад) ++ k14 (ИЗА) + k15 (Ар)] /n

ЭЭТ – эквивалентно-эффективная температура; ΔTмс – межсуточная изменчивость температуры воздуха; ΔTкн – отклонения температуры от климатической нормы для данного дня; ΔТвс – внутрисуточная амплитуда температуры воздуха, (°С); (e + ЭЭТ)– комплексы упругости водяного пара (в гПа) и ЭЭТ, лимитирующие физиологические нагрузки на метеочувствительных больных (явления атмосферной «духоты», перегрева, переохлаждения и др.); f – относительная влажность воздуха, %; Δ Pмс – межсуточная изменчивость давления воздуха, мм рт. ст.; Δ Pкн - отклонения давления воздуха от средней климатической нормы; V –скорость ветра в м/с; N –балл облачности; Осад. – количество осадков, мм; UVI –индекс ультрафиолетовой солнечной радиации; O2 – весовое содержание кислорода в приземной атмосфере в г/м3; ИЗА – индекс загрязнения атмосферы; Ар– индекс гелиогеомагнитной активности. The integral index of the pathogenicity of weather Ki= П [k1 (ЭЭT) + k2 (ΔTмс) + k3 (ΔTкн) +k4 (ΔТвс) + k5 (Δ Pмс) + k6 (Δ Pкн)+ + k7 (V) + k8 (N) + k9 (UVI) + k10 (e+ЭЭT) + k11 ( f ) + k12 (O2) + k13 (осад) + + k14 (ИЗА) + k15 (Ар)] /n temperature`s parameters parameters humidity`s parameters pressure`sparameters solar radiation, air pollution, heliomagnetic activity

The value of IPP varies from 0 to 1, so it can be different gradations of the IPP are consistent with accepted medical criteria of physiological effects on the human body: Ki(IPP) - integral index of the weather pathogenicity, which is calculated as the average value of the index of pathogenicity specific to various meteorological and space modules (k1; k2; k3; k4, etc.). extremely high (> 0.81). sharp ( ) moderate ( ) slight ( ) indifferent (0-0.25) The daily HSI value ranges from 0 to EXTREME HIGH MODERATE LOW 0.0 – 3.0 NONE

Indexes formulas: Effective temperature [Missenard]: Effective temperature [Missenard]: Equivalent-effective temperature [Aizenshtat]: Equivalent-effective temperature [Aizenshtat] : Effective temperature[Steadmen]: Effective temperature[Steadmen]: Wind_chill [Siple,Passel]: Wind_chill [Siple,Passel]: *** t –air temperature(ºC); f – relative humidity (%); V – wind speed (m/s); td – dew point (ºC).

Used data: 1. Meteorological database from 2000 to 2007 (Hydrometeorological centre of Russia); 2. Data on daily mortality for different age groups in the period from 2000 to 2007 (Institute of Economic Forecasting of Russian Academy of Sciences )

Heart attack Heart attack 65+ Insults Insult 65+ ET(daily) ЕТ (max_t)0,020,2-0,1-0,04 AT (daily)0,020,17-0,12-0,01 AT (max_t)0,020,2-0,1-0,03 EET (daily)0 0,3 -0,130 EET (max_t)0,020,2-0,14-0,12 EET(max_wind)-0,03 0,32 -0,110,03 t, ºC0, f, % , ºC V, м/с The correlation coefficient of some indices and daily mortality from heart attacks and insults in different age groups. Murmansk (Summer 2003)

MagadanTETATWind Bod m EET Lag Lag Lag Lag Lag Lag YakutskTETATWind Bod m EET Lag Lag Lag Lag Lag Lag MurmanskTETATWind Bodm EET Lag Lag Lag Lag Lag Lag The correlation coefficients of total mortality with lags of 0 to 5 for the winter period

Forecast of comfort level for the Murmansk region using mesoscale model WRF-ARW EET_index (march`11) Scale of comfort level: Очень жарко Жарко Холодно Комфортно Крайне холодно Прохладно Очень холодно

Zoning of the USA by the values of threshold temperature* [Kalkstein,2003] by the values of threshold temperature * [Kalkstein,2003] Zoning of the European territory of Russia in the degree of comfort * threshold temperature (° C) - the temperature above which there is an increase in mortality from causes related to weather conditions 6 areas: I - Coast of the northern seas; II-continental north; III - central regions, the Upper Volga; IV – Chernozemye, Middle Volga; V-Lower Volga, the Stavropol region, Rostov Region, the North Caucasus; VI - Black Sea coast. ETRzoning

Fields of basic meteorological elements, which are calculated on the basis of the indices, obtained by using mesoscale model WRF-ARW (Weather Research Forecasting, USA) RegionModel version spatial resolution Murmansk areapolar5 х 5 km European territory of Russia, Caucasus region «normal»10 х 10 km Administrative districts of Moscow urban2 x 2 km

European territory of Russia Caucasus region Administrative districts of Moscow Examples the degree of comfort forecasting (EET) for different regions of Russia with the new gradations regions of Russia with the new gradations

Google Earth overlaying the forecast information of the comfort degree on the Google Earth maps zoom

The diurnal variation of comfort for a specific city (the values of the index) on the background of certain grades Diurnal variation of the conditions of comfort from the values of EET. Moscow. March 2011

Instead of the conclusions… It is possible to predict all kinds of indexes with a lead time of up to 5 days. But for doing this it is necessary to answer the following questions: what kind of information and for what categories of people (patients / healthy people, medical agencies) is needed to provide? in what form to give this information for each category? it is needed interaction in various branches of health organizations for understanding the quality of a particular index…

Спасибо за внимание! Thanks you for attention! S.V.Tkachuk K.G.Rubinshtein A.A.Makosko

Forecast of comfort level for the Murmansk region using mesoscale model WRF-ARW Wind_chill (march`11) Scale of comfort level: Комфортно Крайне холодно Прохладно Очень холодно Холодно

Nycomed monitoring of pollen

Forecast of comfort level for the Murmansk region using mesoscale model WRF-ARW ET-index ( t°+RH(%)) (march`11) Очень жарко Жарко Комфортно Крайне холодно Холодно Прохладно Очень холодно Scale of comfort level:

Yakutsk Magadan Murmansk The deviations variability (from the ten-day norm ( ) total mortality and indices of ET, EET and AT * To render the decadal deviations mortality rate multiplied by 10