Количество информации. Алфавитный и вероятностный подход к измерению информации
Количество информации- мера уменьшения неопределённости знаний при получении информационных сообщений.
Чтобы измерить что-либо, необходимо ввести единицу измерения. Минимальная единица измерения информации бит.
Подходы к измерению информации : Содержательный (вероятностный) подход Алфавитный подход
Содержательный (вероятностный) подход. Попытаться объяснить данный подход можно, допустив, что для каждого человека можно условно выделить (например, в виде окружности) область его знания. Всё, что будет находиться за пределами окружности, можно назвать информационной неопределенностью. Постепенно, в процессе обучения или иной деятельности происходит переход от незнания к знанию, т. е. неопределенность уменьшается. Именно такой подход к информации как мере уменьшения неопределенности знания позволяет ее количественно оценить (измерить).
Сообщение, уменьшающее неопределенность знания в 2 раза, несет один бит информации. Например: при подбрасывании монеты может выпасть либо «орел», либо «решка». Это два возможных события. Они равновероятны. Сообщение о том, что произошло одно из двух равновероятных событий (например, выпала «решка»), уменьшает неопределенность нашего знания (перед броском монеты) в два раза.
Формула Хартли. N = 2 i N – количество вариантов исхода, i – количество информации, которое несёт сообщение.
Вывод: Чтобы пользоваться рассмотренным подходом, необходимо вникать в содержание сообщения. Это не позволяет использовать данный подход для кодирования и передачи информации с помощью технических устройств
Алфавитный подход к измерению информации Подход основан на подсчете числа символов в сообщении. Этот подход не связывает количество информации с содержанием сообщения, позволяет реализовать передачу, хранение и обработку информации с помощью технических устройств, не теряя при этом содержания (смысла) сообщения.
Алфавит любого языка включает в себя конечный набор символов. Исходя из вероятностного подхода к определению количества информации, появление символов алфавита в тексте можно рассматривать как различные возможные события. Количество таких событий (символов) N называют мощностью алфавита.
Тогда количество информации, которое несет каждый из N символов, согласно вероятностному подходу определяется из формулы: N = 2 i, I = i · k N – мощность алфавита, i – количество информации, которое несёт каждый символ алфавита, I – количество информации в сообщении при алфавитном подходе, k – количество символов в сообщении.
Вывод Алфавитный подход является объективным способом измерения информации и используется в технических устройствах.
Единицы измерения информации. 1 байт = 8 бит 1 килобайт (Кбайт) = 2 10 байт = 1024 байт 1 мегабайт (Мбайт) = 2 10 Кбайт = 1024 Кбайт 1 гигабайт (Гбайт) = 2 10 Мбайт = 1024 Мбайт
Определение бита – единицы измерения информации может оказаться сложным для понимания ученикам. В этом определении содержится незнакомое детям понятие неопределенность знаний. Прежде всего нужно раскрыть его. Учитель должен хорошо понимать, что речь идет об очень частном случае: о сообщении, которое содержит сведения о том, что произошло одно из конечного множества (N) возможных событий.
Здесь следует воспользоваться интуитивным представлением детей, подкрепив его примерами. События равновероятны, если ни одно из них не имеет преимущества перед другими. Полезно привести примеры и неравновероятных событий. Понятие более вероятное событие можно пояснить через родственные понятия: более ожидаемое, происходящее чаще в данных условиях. Ученики должны научиться приводить примеры равновероятных и неравновероятных событий.