Теорема Пифагора. Дилленбург Лилии 8 «Б».. Формулировки. В прямоугольном треугольнике площадь квадрата, построенного на гипотенузе, равна сумме площадей.

Презентация:



Advertisements
Похожие презентации
Теорема Пифагора. Теорема Пифагора одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника.
Advertisements

Презентация н а т ему : Пифагоровы ш таны ). Доказательство Леонардо да Винчи.
Выполнили Ученики8 класса Водопьянов Влад и Войтович Никита Средняя общеобразовательная школа ГХЦ Мирт.
Теорема Пифагора Швец Владислав, 10 «а» класс.. Cодержание 1 Общее понятие 1 Общее понятие 1 Общее понятие 1 Общее понятие 2 Формулировки 2 Формулировки.
Теорема Пифагора Презентацию подготовила: Ученица 9«Б» класса СОШ 25 П.Энем, Тахтамукайского района Катаева Марианна.
Jjjj Формулировки Теорема Пифагора: Сумма площадей квадратов, опирающихся на катеты (a и b), равна площади квадрата, построенного на гипотенузе (c).
Теорема Пифагора Подготовила ученица 9Б класса Гаджиева Хураман.
Самые интересные доказательства теоремы Пифагора
Способы доказательства теорема Пифагора Подготовила презентацию Ученица 8 «А» класса МБОУ СОШ 19 Авакян Нелля Проверила: Куликова Е.И.
Теорема Пифагора. Формулировки теоремы Геометрическая Геометрическая Геометрическая Алгебраическая Алгебраическая Алгебраическая.
Пифагоровы пазлы Работу выполнила ученица 8 класса «В» Гимназии 1257 Госткина Анна Научный руководитель: Заесёнок Вера Павловна Москва, 2017.
Различные способы доказательства теоремы Пифагора. Выполнила: ученица 8 «А»класса МБОУ «ООШ 26» г. Энгельса Люсина Алёна. Учитель: Еремеева Елена Борисовна.
ПЛОЩАДЬ ФИГУР ТРЕУГОЛЬНИКИ. ТРЕУГОЛЬНИК – ГЕОМЕТРИЧЕСКАЯ ФИГУРА, КОТОРАЯ СОСТОИТ ИЗ ТРЕХ ТОЧЕК, НЕ ЛЕЖАЩИХ НА ОДНОЙ ПРЯМОЙ, И ТРЕХ ОТРЕЗКОВ СОЕДИНЯЮЩИХ.
1. Сумма двух острых углов прямоугольного треугольника равна 90˚ А С В.
Подготовила Яцук Ольга 8 А класс ЛГ МБОУ «СОШ 5» 2014 год.
ПРЯМОУГОЛЬНЫЙ ТРЕУГОЛЬНИК Презентация разработана учителем математики МОУ «Корниловская средняя школа» Купцовой Е.В.
Теорема Пифагора История, доказательство, применение Презентацию подготовила ученица 8А класса ГОУ Сош 119 Алмазова Александра.
Теорема Пифагора Квадрат гипотенузы равен сумме квадратов катетов.
Теорема Пифагора. Устная работа В 30 о о С А D РЕШЕНИЕ: Найдите площадь АВСD.
Транксрипт:

Теорема Пифагора. Дилленбург Лилии 8 «Б».

Формулировки. В прямоугольном треугольнике площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах. Геометрическая формулировка. В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов. Алгебраическая формулировка.

Обратная теорема Пифагора. Для всякой тройки положительных чисел a, b и c, такой, что a2 + b2 = c2, существует прямоугольный треугольник с катетами a и b и гипотенузой c.

Доказательства. Через подобные треугольники. Доказательство через равнодополняемость. Доказательство Леонардо да Винчи.

Через подобные треугольники. Пусть ABC есть прямоугольный треугольник с прямым углом C. Проведём высоту из C и обозначим её основание через H. Треугольник ACH подобен треугольнику ABC по двум углам. Аналогично, треугольник CBH подобен ABC. Введя обозначения получаем Что эквивалентно Сложив, получаем или Ч.Т.Д.

Доказательство через равнодополняемость. Четырёхугольник со сторонами c является квадратом, так как сумма двух острых углов 90°, а развёрнутый угол 180°. Площадь всей фигуры равна, с одной стороны, площади квадрата со стороной (a+b), а с другой стороны, сумме площадей четырёх треугольников и внутреннего квадрата Ч.Т.Д.

Доказательство Леонардо да Винчи. Рассмотрим чертёж, как видно из симметрии, отрезок CI рассекает квадрат ABHJ на две одинаковые части (так как треугольники ABC и JHI равны по построению). Пользуясь поворотом на 90 градусов против часовой стрелки, мы усматриваем равенство заштрихованных фигур CAJI и GDAB. Теперь ясно, что площадь заштрихованной нами фигуры равна сумме половин площадей квадратов, построенных на катетах, и площади исходного треугольника. С другой стороны, она равна половине площади квадрата, построенного на гипотенузе, плюс площадь исходного треугольника. Последний шаг в доказательстве предоставляется читателю.