10. Сайт-направленный мутагенез, применение для исследования механизма ферментативного катализа Физико-химические основы биокатализа в иллюстрациях 10.

Презентация:



Advertisements
Похожие презентации
ГЕННАЯ ИНЖЕНЕРИЯ БЕЛКОВ. Белковая инженерия 6 Комплекс методов и подходов по изучению белков и получению белков с новыми свойствами ОСНОВНЫЕ ЗАДАЧИ Создать.
Advertisements

Биосинтез белка Ученика 9 класса Г Антоненко Андрея.
Рибонуклеи́новые кисло́ты (РНК) нуклеиновые кислоты, полимеры нуклеотидов, в состав которых входят остаток ортофосфорной кислоты, рибоза и азотистые основания.
Лекция. Регуляция экспрессии генов. Репарация ДНК. Мутации. Генная инженерия Регуляция биосинтеза белка у прокариот по теории Жакоб и Моно. Особенности.
ПОЛИМЕРАЗНАЯ ЦЕПНАЯ РЕАКЦИЯ
МОЛЕКУЛЯРНЫЕ МЕХАНИЗМЫ ТРАНСКРИПЦИИ План 1.Транскрипция в клетках прокариот. 2.Отличие транскрипции в клетках про- и эукариот.
Мутационная изменчивость Подготовили Середина Анастасия Копылова Виолетта 11 А Мутационный процесс как главный источник изменений, приводящий к различным.
6. Многосубстратные ферментативные реакции. Физико-химические основы биокатализа в иллюстрациях 6. Многосубстратные ферментативные реакции. Уравнения,
Изучение процесса синтеза белков в рибосоме Рассмотреть принцип, лежащий в основе процесса синтеза и- РНК; Определить свойства генетического кода; Сформировать.
Мутации Работу выполнила ученица 10Б класса Ляшик Екатерина.
1 Результат транскрипции 1. синтез и созревание в клеточных ядрах иРНК, тРНК, мРНК 2. 4 вида иРНК в ядрышке объединяются с рибосомальными белками формируются.
Генная Инженерия Работу выполнил ученик 10 класса – Кириллов Роман.
ЕГО ВЕЛИЧЕСТВО ГЕН Проект юных химиков Руководитель Караваева Н.М. Гимназия 1 имени А.Н.Барсукова.
Синтез белков в клетке Урок для 9 класса. Цель урока: формирование понимания процесса биосинтеза белка Содержание: Теоретическая часть: Теоретическая.
Синтез белков в клетке Урок для 9 класса. Цель урока: формирование понимания процесса биосинтеза белка Содержание: Теоретическая часть: Теоретическая.
Сформировать знания о генетическом коде и его свойствах. Сформировать знания о генетическом коде и его свойствах. Охарактеризовать основные этапы реализации.
Тема: «Биосинтез белка. Трансляция» Пименов А.В. Задачи: Дать характеристику основным этапам трансляции Задачи: Дать характеристику основным этапам трансляции.
В каждой клетке синтезируется несколько тысяч различных белковых молекул. Белки недолговечны, время их существования ограничено, после чего они разрушаются.
Prezentacii.com. это эффективный способ получения in vitro большого числа копий специфических нуклеотидных последовательностей.
Транксрипт:

10. Сайт-направленный мутагенез, применение для исследования механизма ферментативного катализа Физико-химические основы биокатализа в иллюстрациях 10. Сайт-направленный мутагенез, применение для исследования механизма ферментативного катализа

Химический мутагенез одноцепочечных участков рекомбинантных ДНК – метод введения большого числа точковых мутаций разной локализации в исследуемые части генов in vitro Принцип метода: Принцип метода: некоторые химические мутагены, такие как бисульфит натрия, гидроксиламин или метоксиламин, действуют только на одноцепочечные участки ДНК.Пример: Одноцепочечные участки ДНК Дезаминирование остатков цитозина С U Достройка цепи ДНК-полимеразой G-С-пары T-U-пары Трансформация ДНК с мутацией в бактериальные клетки Репликация Замена остатков U на T и полная замена G-С-пары на A-T (транзиция) NaHSO 3

Недостатки метода химического мутагенеза Ограничения на спектр возникающих мутаций, так как лишь определенные остатки нуклеотидов ДНК претерпевают изменения, поэтому многие мутации не могут быть получены с помощью химических мутагенов. Проблему можно частично решить, используя для репарации одноцепочечных брешей ДНК аналоги нуклеотидов, например N-гидроксицитидинтрифосфат, который в составе ДНК одинаково хорошо спаривается с A и G, или создавая такие условия, при которых ДНК-полимераза репарации начинает ошибочно включать в синтезируемую цепь ДНК некомплементарные матрице нуклеотиды. Ограничения на спектр возникающих мутаций, так как лишь определенные остатки нуклеотидов ДНК претерпевают изменения, поэтому многие мутации не могут быть получены с помощью химических мутагенов. Проблему можно частично решить, используя для репарации одноцепочечных брешей ДНК аналоги нуклеотидов, например N-гидроксицитидинтрифосфат, который в составе ДНК одинаково хорошо спаривается с A и G, или создавая такие условия, при которых ДНК-полимераза репарации начинает ошибочно включать в синтезируемую цепь ДНК некомплементарные матрице нуклеотиды. Молекулы ДНК из одной реакционной пробирки, подверженные мутации, представляют собой сложную смесь, в которой каждая молекула несет несколько независимо возникших мутаций. Для введения мутаций в определенный локус исследуемого гена необходимо проводить сложную процедуру отбора, сопряженную с анализом большого числа мутантов. Молекулы ДНК из одной реакционной пробирки, подверженные мутации, представляют собой сложную смесь, в которой каждая молекула несет несколько независимо возникших мутаций. Для введения мутаций в определенный локус исследуемого гена необходимо проводить сложную процедуру отбора, сопряженную с анализом большого числа мутантов.

Сайт-направленный (сайт-специфический) мутагенез Сайт-направленный мутагенез - совокупность методов получения мутаций в определенных сайтах, основанных на использовании генно- инженерных подходов. Метод сайт-направленного мутагенеза позволяет путем мутации в конкретном сайте клонированной последовательности ДНК и, следовательно, направленной замены аминокислотного остатка, получать белки и ферменты с измененными свойствами. С помощью этого метода можно идентифицировать функционально значимые участки в молекулах белков. Для развития метода необходимо знать исходную последовательность генов белков, то есть должны быть развиты и применяемы методы генной инженерии. Кроме того, поскольку для нуклеотидной замены в заранее известном сайте ДНК синтезируют короткие одноцепочечные фрагменты ДНК (праймеры), комплементарные целевой ДНК за исключением места, выбранного для мутации, метод сайт-направленного мутагенеза требует развития методов химического синтеза олигонуклеотидов. Метод сайт-направленного мутагенеза появился только в 70-х годах 20-го века, когда перечисленные методы стали активно развиваться.

Метод сайт-направленного мутагенеза в сочетании с рентгеноструктурным анализом (РСА) белков РСА исходного белка дикого типа Получение мутантного белка Изучение отличия полученного белка от исходного с помощью РСА, методов ферментативной кинетики и др. РСА мутантных ферментов для их комплексов с субстратами и ингибиторами

Майкл Смит Блэкпул, UK - Ванкувер, Канада Биохимик Нобелевская премия по химии 1993 г. Кэри Б. Муллис 1944 Леноир, США Биохимик Нобелевская премия по химии 1993 г. Метод сайт-направленного мутагенеза с использованием олигонуклеотидных праймеров был впервые описан в 1978 году, а в 1993 году основоположник метода Майкл Смит (Michael Smith) был удостоен Нобелевской премии совместно с Кэрри Б. Муллис (Kary B. Mullis), независимо от него разработавшего метод ПЦР.

ПЦР для сайт-направленного мутагенеза Исходная ДНК и праймеры 1-ая ПЦР 2-ая ПЦР 3-я ПЦР ДНК-копия с мутацией Синтезируют пару праймеров, несущих мутацию, и пару праймеров, комплементарных концам нужного фрагмента ДНК. В ходе первых двух реакций образуются фрагменты ДНК с мутацией, которые объединяют в третьей реакции. Полученный фрагмент вставляют в нужную генно-инженерную конструкцию. ПЦР позволяет проводить сайт- направленный мутагенез с использованием праймеров, несущих мутацию, а также случайный мутагенез. В последнем случае ошибки в последовательность ДНК вносятся ДНК-полимеразой в условиях, понижающих ее специфичность.

Ser Ala Замена в гене нужного фермента в плазмиде осуществляется путем замены в нужном кодоне комплементарного праймера: TСC (Ser)GCC (Ala). Далее полимераза без 3-5-экзонуклеазной активности удлиняет этот праймер и ДНК-лигаза восстанавливает целостность цепи. Модифицированный белок экпрессируется и подвергается необходимым процедурам анализа.

Аланиновое сканирование Целенаправленная замена на нейтральную аминокислоту – чаще всего, на аланин (Ala). Целенаправленная замена на нейтральную аминокислоту – чаще всего, на аланин (Ala). Введение остатка Ala в полипептидные цепи не изменяет их общей конформации, как, например, при заменах на глицин или пролин, и не сопровождается электростатическими или стерическими эффектами. Введение остатка Ala в полипептидные цепи не изменяет их общей конформации, как, например, при заменах на глицин или пролин, и не сопровождается электростатическими или стерическими эффектами. Аланин часто встречается как во внутренних, так и во внешних участках полипептидных цепей белковых глобул. Аланин часто встречается как во внутренних, так и во внешних участках полипептидных цепей белковых глобул. С помощью сканирования аланином можно локализовать аминокислоты, образующие активный центр ферментов, влияющие на активность белка, а также исследовать участки полипептидных цепей, существенные для взаимодействия белков с другими макромолекулами и низкомолекулярными лигандами, изучить структурные и функциональные особенности белков. С помощью сканирования аланином можно локализовать аминокислоты, образующие активный центр ферментов, влияющие на активность белка, а также исследовать участки полипептидных цепей, существенные для взаимодействия белков с другими макромолекулами и низкомолекулярными лигандами, изучить структурные и функциональные особенности белков.

Аминокислоты, остатки которых в составе белков заменяются на Ala при применении метода сайт-направленного мутагенеза, и причины, по которым они могут подвергаться замене

Исследована роль водородных связей в реакции активации аминокислоты и изменение при замене аминокислотных остатков кинетических характеристик реакции (К М и k cat ), катализируемой тирозил-тРНК-синтетазой из Bacilus Stearothermophilus. Водородная связь является направленной и поэтому играет большую роль в проявлении специфичности ферментов, а образование сетки водородных связей – хороший способ организации субстрата в активном центре. Сэр Алан Фершт 1943 Лондон - Кембридж, UK Биохимик

Тирозил-тРНК-синтетаза Функциональный димер (α2), катализирует аминоацилирование тРНК, промежуточным продуктом в цепи превращений является тирозил- аденилат (Tyr-АМР): Cys35, Thr51 и His48 Фермент из B. Stearothermophilus был закристаллизован. В том числе было показано, что при образовании промежуточного продукта реакции аминоацилирования тРНК – тирозиладенилата водородные связи с остатком рибозы тирозиладенилата образуют боковые радикалы остатков Cys35, Thr51 и His48. Е + АТР + Tyr E·[АМР~Tyr] + pp i E + Tyr~тРНК Tyr + АМР тРНК Tyr

Водородные связи между тирозил-тРНК- синтетазой и тирозил-аденилатом Прямоугольниками и шрифтом синего цвета обозначены аминокислотные остатки, подающие для образования водородных связей группы основной цепи.

Роль Cys35 в активности фермента Cys35 Gly35 и Cys35Ser35 Сродство к субстрату АТР (k cat /К М реакции аминоацилирования) снижалось для обоих мутантов, как для первого, лишенного потенциальной возможности образовывать водородную связь за счет удаления -SH группы, так и для второго, у которого –SH группа заменена на –ОН группу. Фермент с заменой на Ser35 обладал более низким сродством к субстрату АТР, чем фермент с заменой на Gly35, хотя замена на Ser35 оставляет возможность образования водородной связи. Возможно, это наблюдается из-за более прочного образования водородной связи мутанта Cys35Ser35 с молекулой воды, что затрудняет образование фермент- субстратного комплекса.

Роль Cys35 в активности фермента Cys35Ala Эта замена позволяет определить роль –SH группы цистеина в функционировании активного центра фермента. Так согласно данным РСА –SH группа цистеина расположена близко от 3-ОН группы субстрата, значит между этими двумя группами может образоваться водородная связь. Однако с помощью РСА не удается подтвердить наличие этой связи. При замене на Ala величина К М упала в 20 раз, а величина k cat для реакции активации аминокислоты (т.е. для АТР) упала в 2 раза. Эффективность реакции (k cat /К М ) образования аминоациладенилата увеличилась в 10 раз, в основном за счет снижения К М. Вероятно, в этом случае повышение эффективности реакции происходит за счет наличия водородной связи в ферменте дикого типа.

Роль Thr51 в активности фермента C помощью РСА было показано, что –OH группа бокового радикала аминокислотного остатка Thr51 образует слабую водородную связь с АМР. В отсутствие субстрата, однако, –OH группа Thr51 образует прочную водородную связь с молекулой воды, что способствует диссоциации комплекса фермент- субстрат. Замена Thr51 Ala привела к незначительным изменениям величин параметра k cat обеих реакций, но повлияла на сродство фермента к АТР, увеличив его, поскольку К М снизилась в два раза. Соответственно увеличились вдвое величины параметров k cat /К М. Это согласуется с предположением, что незначительное повышение сродства фермента к субстрату может достигаться удалением слабой водородной связи с субстратом в активном центре.

Роль Thr51 в активности фермента В структуре гомологичного фермента тирозил-тРНК-синтетазы из E.Coli остаток Thr51 заменен на пролин, и это вызывает изгиб полипептидной цепи (нарушение структуры α-спирали). У мутантного фермента из B. Stearothermophilus с заменой Thr51Pro51 водородная связь с кислородом рибозного кольца образовываться не может. Такая мутация привела к значительным изменениям величин кинетических параметров. Для первой реакции образования аминоациладенилата значение величины k cat выросло почти в два раза, тогда как для реакции аминоацилирования – упало в 2,6 раза. Сродство фермента к АТР (К М ) повысилось в обоих случаях – в 15 и 130 раз соответственно. Для обеих реакций повысилась их эффективность (k cat /К М для АТР), наблюдался соответственно 25- и 50-кратный рост каталитической эффективности ферментативной реакции, в основном за счет снижения К М для АТР.

Кинетические параметры реакции образования аминоациладенилата для тирозил-тРНК-синтетазы дикого типа и мутантных форм фермента Ферментk cat (с -1 ) К М для АТР (мМ) k cat /К М (с -1 М -1 ) WT (Thr51)7,60,98,4 Ala518,60,5415,9 Pro5112,00,058208,0

Кинетические параметры реакции переноса аминоацильного остатка на тРНК для тирозил-тРНК-синтетазы дикого типа и мутантных форм фермента Ферментk cat (с -1 ) К М для АТР (мМ) k cat /К М (с -1 М -1 ) WT (Thr51)4,72,51,86 Ala514,01,23,20 Pro511,80,01995,8

Развитие сайт-направленного мутагенеза, модификации и усовершенствования С помощью метода ПЦР можно получать множественные мутации в конкретных участках ДНК. В этом случае амплификацию мутагенизируемого сегмента ДНК производят в присутствии трех (вместо четырех) dNTP, причем один из них – в высокой концентрации. Именно этот нуклеотид преимущественно включается в амплифицируемый фрагмент ДНК вместо недостающего нуклеотида, что сопровождается накоплением в ДНК-продукте множественных случайных мутаций в виде соответствующих замен нуклеотидов. В таких искусственных условиях мутации возникают за счет снижения точности функционирования ДНК- полимеразы. С помощью метода ПЦР можно получать множественные мутации в конкретных участках ДНК. В этом случае амплификацию мутагенизируемого сегмента ДНК производят в присутствии трех (вместо четырех) dNTP, причем один из них – в высокой концентрации. Именно этот нуклеотид преимущественно включается в амплифицируемый фрагмент ДНК вместо недостающего нуклеотида, что сопровождается накоплением в ДНК-продукте множественных случайных мутаций в виде соответствующих замен нуклеотидов. В таких искусственных условиях мутации возникают за счет снижения точности функционирования ДНК- полимеразы. При использовании в ПЦР вырожденных праймеров, которые представляют собой сложную смесь олигонуклеотидов, содержащих многие точковые мутации, можно сканировать мутациями определенные участки ДНК. В таком классическом варианте постановки ПЦР, кроме точковых мутаций, можно получать делеции и вставки. Целенаправленно получать точковые мутации, делеции и вставки, а также гибридные молекулы ДНК без применения ДНК- лигазы, можно с применением подхода к получению гибридных генов с помощью перекрывающихся праймеров. При использовании в ПЦР вырожденных праймеров, которые представляют собой сложную смесь олигонуклеотидов, содержащих многие точковые мутации, можно сканировать мутациями определенные участки ДНК. В таком классическом варианте постановки ПЦР, кроме точковых мутаций, можно получать делеции и вставки. Целенаправленно получать точковые мутации, делеции и вставки, а также гибридные молекулы ДНК без применения ДНК- лигазы, можно с применением подхода к получению гибридных генов с помощью перекрывающихся праймеров.

Метод амбер-супрессии с использованием аминоацилированных различными аминокислотами супрессорных тРНК, которые узнают нонсенс-триплеты в мутантных мРНК в процессе трансляции Замена определенных аминокислот в полипептидных цепях белков in vivo. Взамен аминокислоты, присутствующей в белке дикого типа, встраивается аминокислота, которую несет аминоацилированная супрессорная тРНК. В дополнение к природным супрессорным тРНК E. coli синтезированы in vitro гены, кодирующие супрессорные РНК новой специфичности. В итоге в синтезирующейся in vivo полипептидной цепи в результате супрессии кодона UAG (amber) может быть произведено до 13 аминокислотных замен. С использованием такого подхода удалось произвести >1600 замен аминокислот Lac-репрессора E. coli и локализовать участки полипептидной цепи, существенные для связывания индуктора, прочного связывания оператора и термостабильности белка. Преимущество метода: не требует синтеза большого числа мутантных генов и их последующего отбора, так как введение одного мутантного гена в составе экспрессирующего вектора в клетки разных супрессорных штаммов E. Сoli позволяет получать разные замены аминокислот с одновременной сверхпродукцией мутантного белка в бактериальных клетках.

Направленное получение мутаций в сегментах рекомбинантных генов, введение мутантных генов в организм и исследование влияния полученных мутаций на функционирование гена – совокупность таких подходов получила название обратной генетики.Направленное получение мутаций в сегментах рекомбинантных генов, введение мутантных генов в организм и исследование влияния полученных мутаций на функционирование гена – совокупность таких подходов получила название обратной генетики. Возможность замены конкретных аминокислот в белках с известной первичной структурой, а также объединение в одной полипептидной цепи доменов различных белков и ферментов позволили, по сути дела, конструировать in vitro новые белки, не встречающиеся в природе, и привели к созданию в молекулярной генетике нового направления – белковой инженерии.Возможность замены конкретных аминокислот в белках с известной первичной структурой, а также объединение в одной полипептидной цепи доменов различных белков и ферментов позволили, по сути дела, конструировать in vitro новые белки, не встречающиеся в природе, и привели к созданию в молекулярной генетике нового направления – белковой инженерии.