1.Перечислите единицы измерения количества информации? 2. Как определяется количество информации в зависимости от количества возможных событий? 3. Как.

Презентация:



Advertisements
Похожие презентации
СИСТЕМЫ СЧИСЛЕНИЯ Система счисления – это знаковая система, в которой числа записываются по определенным правилам с помощью символов некоторого алфавита,
Advertisements

СИСТЕМЫ СЧИСЛЕНИЯ Система счисления – это знаковая система, в которой числа записываются по определенным правилам с помощью символов некоторого алфавита,
СИСТЕМЫ СЧИСЛЕНИЯ Система счисления – это знаковая система, в которой числа записываются по определенным правилам с помощью символов некоторого алфавита,
«Все есть число», говорили пифагорийцы, подчеркивая необычайно важную роль чисел в практической деятельности. Для представления чисел используются системы.
Автор: Пророченко Ю.М.. Система счисления это знаковая система, в которой числа записываются по определенным правилам с помощью символов некоторого алфавита,
Системы счисления. Все есть число", говорили пифагорийцы, подчеркивая необычайно важную роль чисел в практической деятельности. Известно множество способов.
Система счисления - это совокупность правил для обозначения и наименования чисел. Системы счисления делятся на позиционные и непозиционные. Знаки, используемые.
Позиционные системы счисления. ПОЗИЦИОННЫЕ СИСТЕМЫ СЧИСЛЕНИЯ В позиционных системах счисления количественный эквивалент (значение) цифры зависит от её.
4.1. Кодирование числовой информации Представление числовой информации с помощью систем счисления Для записи информации о количестве объектов используются.
СЧИСЛЕНИЕ (нумерация), способ выражения и обозначения чисел. Система счисления это знаковая система, в которой числа записываются по определенным правилам.
Представление ( кодирование ) чисел Представление ( кодирование ) чисел.
План-конспект урока по теме «Системы счисления» Цели и задачи: Дать определения понятий "система счисления", "позиционная СС", "непозиционная СС", "алфавит.
Системы счисления. Содержание Введение Непозиционные системы счисления Непозиционные системы счисления Единичная Римская Позиционные системы счисления.
ПОЗИЦИОННЫЕ СИСТЕМЫ СЧИСЛЕНИЯ С ПРОИЗВОЛЬНЫМ ОСНОВАНИЕМ Возможно использование множества позиционных систем счисления, основание которых равно или больше.
Системы счисления. Содержание Введение Непозиционные системы счисления Непозиционные системы счисления Единичная Римская Позиционные системы счисления.
Кодирование числовой информации. Для записи информации о количестве объектов используются числа. Система счисления – это знаковая система, в которой числа.
Системы счисления. Система счисления Система счисления – это знаковая система, в которой числа записываются по определенным правилам с помощью некоторого.
Системы счисления Содержание : Системы счисления это... Системы счисления это... Системы счисления это... Системы счисления это... Виды систем счисления.
Представление числовой информации с помощью систем счисления.
Система счисления – это совокупность приёмов и правил для обозначения и именования чисел. Единичная (унарная) система записи чисел:
Транксрипт:

1.Перечислите единицы измерения количества информации? 2. Как определяется количество информации в зависимости от количества возможных событий? 3. Как определяется количество возможных событии в зависимости от количества информации? от количества информации? 4.Что такое знаковая система? 5. Что такое алфавит? 6. Какие бывают языки? 7.Чем различаются формальные и естественные языки? 8. Каким образом представлена информация в живых организмах? ПРОВЕРКА ДОМАШНЕГО ЗАДАНИЯ

СИСТЕМА СЧИСЛЕНИЯ Система счисления – это знаковая система, в которой числа записываются по определенным правилам с помощью символов некоторого алфавита, называемых цифрами. Позиционная система счисления Майя Все системы счисления делятся на две группы: непозиционные и позиционные Древнерусская непозиционная система счисления Древнеегипетская непозиционная система счисления Арабская позиционная система счисления

ПОЗИЦИОННЫЕ СИСТЕМЫ СЧИСЛЕНИЯ ПОЗИЦИОННЫЕ СИСТЕМЫ СЧИСЛЕНИЯ Непозиционные системы счисления Непозиционные системы счисления

ЕДИНИЧНАЯ СИСТЕМА СЧИСЛЕНИЯ Находки археологов на стоянках первобытных людей свидетельствуют о том, что первоначально количество предметов отображали равным количеством каких-либо значков (бирок): зарубок, черточек, точек. Позже значки стали группировать по три или по пять. Такая система записи чисел называется единичной (унарной), так как любое число в ней образуется путем повторения одного знака, символизирующего единицу. Отголоски единичной системы счисления встречаются и сегодня (счетные палочки для обучения счету; полоски, нашитые на рукаве, означают на каком курсе учится курсант военного училища). Отображение количества предметов узелками

ДРЕВНЕЕГИПЕТСКАЯ СИСТЕМА СЧИСЛЕНИЯ Примерно в третьем тысячелетии до нашей эры древние египтяне придумали свою числовую систему, в которой для обозначения ключевых чисел 1, 10, 100 и т.д. использовались специальные значки иероглифы. Записывались цифры числа начиная с больших значений и заканчивая меньшими. Если палочек нужно изобразить несколько, то их изображали в два ряда, причем в нижнем ряду должно быть столько же палочек, сколько и в верхнем, или на одну больше. Если десятков, единиц, или какого-то другого разряда не было, то переходили к следующему разряду Все остальные числа составлялись из этих ключевых при помощи операции сложения. Система счисления Древнего Египта является десятичной, но непозиционной.

РИМСКАЯ СИСТЕМА СЧИСЛЕНИЯ В основе римской системы счисления лежали знаки I (один палец) для числа 1, V (раскрытая ладонь) для числа 5, Х (две сложенные ладони) для 10. Число обозначается набором стоящих подряд цифр. Значение числа определяется как сумма или разность цифр в числе. Если меньшая цифра стоит слева от большей, то она вычитается, если справа, то прибавляется. Например, число 1794 будет записано так: MDCCXCIV. Календарь на каменной плите, найденный в Риме Для обозначения чисел 100, 500 и 1000 применяются первые буквы соответствующих латинских слов (Centum - сто, Demimille - половина тысячи, Mille - тысяча).

ГРЕЧЕСКАЯ АЛФАВИТНАЯ СИСТЕМА СЧИСЛЕНИЯ Для обозначения чисел 10, 20, …, 90 применялись следующие 9 букв (ι, κ, λ,…). Для обозначения чисел 100, 200, …, 900 – последние 9 букв (ρ, σ, τ,…). Чтобы не путать числа с буквами, над ними ставили черточку. Например, число 141 обозначалось ρμα. Для обозначения тысяч греки использовали те же буквы, но при их записи слева внизу ставили косую черточку. Число греки называли мириадой. Таким способом греки могли записать числа до 108. Это число называлось мириада мириад. Это самое больше число которое называли и записывали греки. В алфавитной системе счисления Древней Греции числа 1, 2, …, 9 обозначались первыми девятью буквами греческого алфавита (α, β, γ, …).

СЛАВЯНСКАЯ АЛФАВИТНАЯ СИСТЕМА СЧИСЛЕНИЯ Над буквами, обозначающими числа, ставился специальный знак «~» - титло. Самая высшая из величин называлась «колода» (10 50 ). Считалось, что «боле сего несть человеческому уму разумевати». В России славянская нумерация сохранилась до конца XVII века. При Петре I возобладала так называемая арабская нумерация, которой мы пользуемся и сейчас. Славянская нумерация сохранилась только в богослужебных книгах. Древнерусская алфавитная система счисления, использующая кириллицу У славянских народов числовые значения букв установились в порядке славянского алфавита, который использовал сначала глаголицу, а затем кириллицу.

НЕДОСТАТКИ НЕПОЗИЦИОННЫХ СИСТЕМ СЧИСЛЕНИЯ 1. Существует постоянная потребность введения новых знаков для записи больших чисел 2. Невозможно представлять дробные и отрицательные числа. 3. Сложно выполнять арифметические операции, так как не существует алгоритмов их выполнения.

ЗАДАНИЕ 1 Чему в десятичной системе счисления равно следующее число, записанное римской цифрой LXIV? Чему в римской системе счисления равно следующее число, записанное десятичной цифрой 99? 64 IC

ПОЗИЦИОННЫЕ СИСТЕМЫ СЧИСЛЕНИЯ В позиционных системах счисления количественный эквивалент (значение) цифры зависит от её места (позиции) в записи числа. Позиция цифры в числе называется разрядом. Разряд числа возрастает справа налево, от младших разрядов к старшим. Основанием позиционной системы счисления называется целое число, которое равно количеству цифр, используемых для изображения чисел в данной системе счисления. Основание показывает, во сколько раз изменяется количественное значение цифры при перемещении её в младший или старший разряд.

ПОЗИЦИОННЫЕ СИСТЕМЫ СЧИСЛЕНИЯ С ПРОИЗВОЛЬНЫМ ОСНОВАНИЕМ Возможно использование множества позиционных систем счисления, основание которых равно или больше 2. В системах счисления с основанием q (q-ичная система счисления) числа в развернутой форме записываются в виде суммы ряда степеней основания q с коэффициентами, в качестве которых выступают цифры 0, 1, …, q -1. или A q – число в q -ичной системе счисления, q – основание системы счисления, A i – цифры, принадлежащие алфавиту данной системы счисления, n – число целых разрядов числа, m – число дробных разрядов числа. Коэффициенты a i - цифры числа, записанного в q -ичной системе счисления. Свернутая форма записи числа: Свернутой формой записи чисел мы пользуемся в повседневной жизни, её называют естественной или цифровой. Для записи дробей используются разряды с отрицательными значениями степеней основания.

ДЕСЯТИЧНАЯ СИСТЕМА СЧИСЛЕНИЯ Основание: q = 10. Алфавит: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Свернутая форма записи числа: Развернутая форма записи числа: Коэффициенты a i - цифры десятичного числа. Например, число 123,45 10 в развернутой форме будет записываться следующим образом: Умножение или деление десятичного числа на 10 (величину основания) приводит к перемещению запятой, отделяющей целую часть от дробной на один разряд вправо или влево. Например: 123,45 10 · 10 = 1234,5 10 ; 123,45 10 : 10 = 12,

ДВОИЧНАЯ СИСТЕМА СЧИСЛЕНИЯ Основание: q = 2. Алфавит: 0, 1. Свернутая форма записи числа: Развернутая форма записи числа: Коэффициенты a i - цифры двоичного числа (0 или 1). Например, число 101,01 2 в развернутой форме будет записываться следующим образом: Умножение или деление двоичного числа на 2 (величину основания) приводит к перемещению запятой, отделяющей целую часть от дробной на один разряд вправо или влево. Например: 101,01 2 · 2 = 1010,1 2 ; 101,01 2 : 2 = 10,101 2.

ВОСЬМЕРИЧНАЯ СИСТЕМА СЧИСЛЕНИЯ Основание: q = 8. Алфавит: 0, 1, 2, 3, 4, 5, 6, 7. Свернутая форма записи числа: Развернутая форма записи числа: Коэффициенты a i - цифры восьмеричного числа. Например, число 123,67 8 в развернутой форме будет записываться следующим образом: Умножение или деление восьмеричного числа на 8 (величину основания) приводит к перемещению запятой, отделяющей целую часть от дробной на один разряд вправо или влево. Например: 123,67 8 · 8 = 1236,7 8 ; 123,67 8 : 8 = 12,367 8.

ШЕСТНАДЦАТЕРИЧНАЯ СИСТЕМА СЧИСЛЕНИЯ Основание: q = 16. Алфавит: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. Свернутая форма записи числа: Развернутая форма записи числа: Коэффициенты a i - цифры шестнадцатеричного числа. Например, число 2BC,DE 16 в развернутой форме будет записываться следующим образом: Умножение или деление шестнадцатеричного числа на 16 (величину основания) приводит к перемещению запятой, отделяющей целую часть от дробной на один разряд вправо или влево. Например: 2BC,DE 16 · 16 = 2BCD,E 16 ; 2BC,DE 16 : 16 = 2B,CDE 16.

ЗАДАНИЕ 2 ЗАПОЛНИТЕ ЭТУ ТАБЛИЦУ Система счисления ОснованиеЦифры Шестнадцатер ичная 16 десятичная0,1,2,3,4,5,6,7, 8,9 80,1,2,3,4,5,6,7 2

ЗАДАНИЕ 3 Выполнить задания для самостоятельной работы 2.19, 2.20, 2.21, 2.22, 2.23 страница 45. практикума

КОМПЬЮТЕРНЫЙ ПРАКТИКУМ Римская система счисления

ПОДВЕДЕНИЕ ИТОГОВ Все системы счисления делятся на две группы: непозиционные и позиционные В позиционных системах счисления количественный эквивалент (значение) цифры зависит от её места (позиции) в записи числа. Система счисления – это знаковая система, в которой числа записываются по определенным правилам с помощью символов некоторого алфавита, называемых цифрами. В системах счисления с основанием q (q-ичная система счисления) числа в развернутой форме записываются в виде суммы ряда степеней основания q с коэффициентами, в качестве которых выступают цифры 0, 1, …, q -1. Свернутой формой записи чисел мы пользуемся в повседневной жизни, её называют естественной или цифровой.

ДОМАШНЕЕ ЗАДАНИЕ Прочитать материал учебника – темы 2.5.3, 2.5.4, 2.6, Ответить на вопросы в конце этих параграфов, выполнить в тетради задания стр.92.