1 2 Определение производной функции в точке Непрерывность дифференцируемой функции Дифференциал функции Геометрический смысл производной и дифференциала.

Презентация:



Advertisements
Похожие презентации
Дифференциал функции Определение 1. Пусть приращение функции можно представить в виде где A не зависит от, - бесконечно малая более высокого порядка малости,
Advertisements

Лектор Пахомова Е.Г г. Математический анализ Раздел: Дифференциальное исчисление Тема: Производная функции.
Производная и дифференциал.. Геометрический смысл производной секущая Будем М М 0. Тогда секущая М 0 М занимает соответственно положения М 0 М 1, М 0.
Производная функции.
Элементы дифференциального исчисления Лекция 4. Дифференциальное исчисление функций одной переменной 1. Производные 2. Таблица производных 3. Дифференциал.
Производная и ее применение в науке и технике Выполнил: Егоров Даниил, студент 1-ого курса ЧЭМК.
Лектор Пахомова Е.Г г. Математический анализ Раздел: Функция нескольких переменных Тема: Частные производные высших порядков. Дифференцируемость.
ЛЕКЦИЯ 2 по дисциплине «Математика» на тему: «Производные функций. Правила дифференцирования. Дифференциал функции» для курсантов I курса по военной специальности.
Бер Л.М. Дифференциальное исчисление ТПУ Рег. 283 от Company Logo Дифференциальное исчисление Задача 2. Пусть (t) есть количество вещества прореагировавшего.
Дифференциальное исчисление функции одной переменной Дифференциальное исчисление – раздел математики, в котором изучаются производные и дифференциалы функций.
Лектор Белов В.М г. Математический анализ Раздел: Дифференциальное исчисление Тема: Дифференциал функции. Производные и дифференциалы порядка n.
Основы высшей математики и математической статистики.
ПРОИЗВОДНАЯ ФУНКЦИИ В ТОЧКЕ Лекция 1 Дифференциальное исчисление Автор: И. В. Дайняк, к.т.н., доцент кафедры высшей математики БГУИР.
Производная и дифференциал.. Дифференциал Пусть функция y=f(x) дифференцируема на [a, b]. Тогда - бесконечно малая функция более высокого порядка, чем.
Производная функции Производные высших порядков Производные от функций, заданных параметрически Дифференциал функции Геометрический смысл дифференциала.
Производная функции. Производная функции (1) Пусть функция определена в некоторой окрестности точки (включая точку ). Определение 1. Определение 2. Касательной.
1 Элементы дифференциального исчисления. 2 Дифференциальное исчисление функций одной переменной 1. Производные 2. Таблица производных 3. Дифференциал.
Приложения производной Функции нескольких переменных.
Пусть функция y=f(x) определена на промежутке Х. Выберем точку Дадим аргументу x приращение Δx, тогда функция получит приращение Δy=f(x+Δx)- f(x).
Определение производной производной Задача о вычислении мгновенной скорости s ( t ) = 4 t² - закон движения материальной точки по прямой s - путь, пройденный.
Транксрипт:

1

2 Определение производной функции в точке Непрерывность дифференцируемой функции Дифференциал функции Геометрический смысл производной и дифференциала Физические приложения производной и дифференциала

3 Определение производной функции в точке Пусть функция f(x) определена в некоторой окрестности точки x 0. ОПРЕДЕЛЕНИЕ. Если существует (конечный) предел отношения то f(x) называется дифференцируемой точке х 0, а сам предел называется производной функции f(x) в точке х 0 и обозначается f '(x 0 ), то есть Обозначим x = x – x 0 – приращение аргумента при переходе из точки х 0 в точку х, а y = f(x 0 + x) – f(x 0 ) – соответствующее приращение функции. Тогда производная функции f(x) в точке х 0 предел отношения приращения функции к вызвавшему его приращению аргумента, когда приращение аргумента стремится к нулю.

4 Пример 1. Приведем примеры вычисления производных некоторых простейших элементарных функций, исходя из определения производной. y = a x (0 < a 1), x R. Возьмем х 0 R и найдем приращение функции в этой точке: Так как х 0 – произвольная точка из области определения функции, то Пример 2. y = log a x (0 0. Возьмем х 0 > 0.Считая, что | х |< х 0, можем записать: Так как х 0 > 0 – произвольная точка, то

5 Пример 3. Возьмем х 0 > 0.Считая, что | х |< х 0, можем записать: Так как х 0 > 0 – произвольная точка, то Пример 4. y = sinx, x R. Возьмем х 0 R и вычислим приращение функции в этой точке: Итак (sinx) = cosx, x R.

6 ТЕОРЕМА. Если функция f(x) дифференцируема в точке x 0, то она непрерывна в этой точке. Доказательство. Пусть существует Тогда Отсюда получим, что f (x) – f (x 0 ) = f '(x 0 ) (х – х 0 ) + (х – х 0 )α(x) при х х 0. То есть f(x) непрерывна в точке x 0. Непрерывность дифференцируемой функции (1)

7 ЗАМЕЧАНИЕ. Непрерывность функции в точке не является достаточным условием существования в этой точке производной. Пример 5. f (x) = х. Исследуем поведение f (x) в окрестности х 0 = 0. Здесь и f (x) f (0) = 0 при x 0. Т.е. функция непрерывна в точке х 0 = 0. Рассмотрим x y 0 Предел не существует, так как Итак, функция f (x) = х не имеет производной в точке х = 0, хотя непрерывна в этой точке

8 Пример x y 0 при х 0. при х 0. Т.е. f(x) непрерывна в точке х = 0. Т.е. f(x) не имеет производной в точке х = 0 и, следовательно, не дифференцируема в этой точке. Исследуем поведение f (x) в окрестности точки х = 0.

9 Пусть функция у = f(x) дифференцируема в точке х 0. Тогда, согласно (1), ее приращение в точке х 0 можно записать в виде y = f(x 0 + x) – f(x 0 ) = f (x 0 ) х + о( x) при х. Дифференциал функции f (x 0 ) x – главная линейная относительно x часть приращения функции у = f(x) в точке х 0 называется дифференциалом функции в точке х 0 при приращении x и обозначается df(х 0 ; x) или df(х 0 ) или df или dу. y = f(x 0 + x) – f(x 0 ) = df(х 0 ; x) + о( x) при х. ОПРЕДЕЛЕНИЕ. Главная часть приращения, линейная относительно х. Бесконечно малая более высокого порядка, чем х. Теперь приращение функции можно записать так:

10 ЗАМЕЧАНИЕ. Приращение х часто обозначают символом dх и называют дифференциалом независимой переменной. Таким образом, дифференциал функции в точке x 0 можно записать в виде df(х 0 ) = f '(x 0 ) dх. Если функция дифференцируема в каждой точке некоторого интервала, то ее дифференциал dy – функция от х и dx: dy = f '(x) dx. Отсюда, в частности, получается выражение для производной То есть производную можно рассматривать как отношение дифференциала функции к дифференциалу независимой переменной.

11 Геометрический смысл производной и дифференциала Пусть функция у = f(x) определена в U(x 0 ) и дифференцируема в точке х 0. М0М0 М x0x0 x 0 + x y x y = f(x) y0y0 y 0 + у 0 L – секущая L 0 – касательная x y = f(x 0 + x) – f(x 0 ) при х в силу непрерывности функции. Касательной к графику функции у = f(x) в точке М 0 называется предельное положение секущей L при х. y Если функция дифференцируема в точке х 0, то в уравнении секущей у/ х f (x 0 ) при х и уравнение касательной имеет вид у = у 0 + f (x 0 ) (х – х 0 ).

12 М0М0 М x0x0 x 0 + x dy = df(х 0 ; x) = f (x 0 ) x x y = f(x) f(x0)f(x0) f(x 0 + x ) 0 x y F E EM = o( x ) при x 0 L0L0 tg = f (x 0 ) Если же у/ х при х, то прямая х = х 0, получающаяся из уравнения секущей, называется вертикальной касательной к графику функции в точке М 0. Из уравнения касательной получим у – у 0 = f (x 0 ) (х – х 0 ) = df(х 0 ) – приращение ординаты касательной при переходе из точки х 0 в точку х. Нормалью к графику функции в точке М 0 называется прямая, перпендикулярная касательной, проходящая через точку М 0. Ее уравнение имеет вид у = у 0 – 1/f (x 0 ) (х – х 0 ). L 1 – нормаль

13 Физические приложения производной и дифференциала Если S(t) – путь, пройденный материальной точкой за время t, то S '(t) – мгновенная скорость материальной точки, а dS = S '(t)dt – расстояние, которое прошла бы материальная точка за промежуток времени от t до t + dt, если бы она двигалась со скоростью, равной мгновенной скорости в момент t. Если Q(t) – количество электричества, протекающего через поперечное сечение проводника в момент времени t, то Q '(t) = I – сила тока. Если N(t) – количество вещества, образующегося в момент t в ходе химической реакции, то N '(t) – скорость химической реакции.

14 Спасибо за внимание!