2 Пример: х 3 – 5 х 2 + 8 х – 4 = 0 х 3 – 2 х 2 –3 х 2 + 8х – 4 = 0 х 2 (х – 2) – (3 х 2 – 8х + 4) = 0 3 х 2 – 8х + 4 = 0 х = 2 х = 2/3 х 2 (х – 2) –

Презентация:



Advertisements
Похожие презентации
Решение уравнений третьей степени
Advertisements

Квадратные уравнения Обобщающий урок 8 класс. Квадратное уравнение и его корни Какое уравнение называют квадратным? Запишите примеры. Как называют коэффициенты.
1. Решить уравнения : 1) X + 0,7 = 0,53 2) 2x + 3x = 20 3)2,2 = 3x – 1,7 4) 16 – (2 х +5) = 30 5) 3 х – 1,7 = 2,2 6) 8 х – 13 = 5 х – 5 7) 11 у – (3 +
Какое из данных уравнений не является квадратным 1) 2х - х² - 8 = 0 2) 4х² + х = 4х = - 2 Следующий вопрос 3) 3 + х² = 0 4) х² = (х – 2)(х + 1)
Методическая разработка по алгебре (9 класс) на тему: Повторение.Решение уравнений.
Ребята, вы должны были уже решить множество примеров на квадратные уравнения, сегодня мы изучим еще одну формулу корней. Мы хорошо знаем, что корни квадратного.
Назовите коэффициенты квадратного уравнения 1)–х 2 + х – 6 = 0 2)–4 х – х = 0 3) х – 2 х 2 = 0 4)х = 0 5)5 х 2 – 4 х = 0.
КВадратные УРавнения – это легко!. КЛАССИФИКАЦИЯ КВУР.
Системы двух линейных уравнений с двумя неизвестными.
Квадратное уравнение и его корни Задания для устного счета 8 класс.
Содержание Определение квадратного уравнения; Решение неполных квадратных уравнений; Решение уравнений, сводящихся к неполным квадратным уравнениям; Тест.
Алгоритм решения квадратного уравнения Чтобы решить квадратное уравнение, достаточно: 1) вычислить дискриминант и сравнить его с нулем; 2) если дискриминант.
Квадратные уравнения Повторение за курс базовой школы Подготовила Луцевич Н.А.
Теорема Виета Алгебра 8 класс. Основная цель – изучить теорему Виета и ей обратную, уметь применять при решении квадратных уравнений Девиз урока: «Вся.
ОПРЕДЕЛЕНИЕ: Уравнение вида ax 2 + bx + с = 0, где х – переменная; а, b, с – некоторые числа, причём а 0, называют квадратным уравнением. а – первый коэффициент.
Способ 1. Разложение левой части уравнения на множители. Ответ: 5; х - 8 х.
Квадратные уравнения. Квадратным уравнением называют уравнение вида ах 2 + вх +с = 0, где х – переменная, а, в, с – некоторые числа, причем.
А лексеюк Елена Михайловна 8 класс учебный год.
Решение дробных рациональных уравнений Учитель ГБОУ СОШ 1692 Новикова Н.В.
Р е ш е н и е к в а д р а т н ы х у р а в н е н и й п о о с н о в н о й ф о р м у л е.
Транксрипт:

2 Пример: х 3 – 5 х х – 4 = 0 х 3 – 2 х 2 –3 х 2 + 8х – 4 = 0 х 2 (х – 2) – (3 х 2 – 8х + 4) = 0 3 х 2 – 8х + 4 = 0 х = 2 х = 2/3 х 2 (х – 2) – (3 (х –2) (х – 2/3)) = 0 х 2 (х – 2) – ((х – 2) (3х – 2)) = 0 (х – 2)(х 2 – 3х + 2) = 0 х – 2 = 0 х 2 – 3х + 2 = 0 х = 2х = 2 х = 1 Ответ: х = 2; х = 1.

3 х 3 + рх + q = 0 (1) (2)

4 Первый пример: Здесь р = 6 и q = -2. Наша формула дает: В школе нас приучили, что все корни должны извлекаться, и полученный ответ может показаться нам недостаточно красивым. Но согласитесь, что никакой подбор не помог бы нам узнать, что эта разность двух кубических корней является решением такого простого уравнения. Так что этот результат можно записать нашей формуле в актив. Здесь р = 6 и q =-2.Наша формула дает:. Первый пример:

5 Второй пример:. Формула (3) дает: Ответ более громоздок. Это число можно найти приближенно с помощью таблиц, и чем точнее будут таблицы, тем ближе будет результат к единице. Причина проста: это число равно единице. Но из формулы этого не видно, и это, пожалуй, недостаток формулы: ведь при решении квадратного уравнения с целыми коэффициентами, мы сразу видим, является ли оно рациональным.

6 Третий пример: (х + 1)(х + 2)(х - 3) = 0. Сразу видно, что это уравнение имеет три решения: -1, -2, 3. Но попробуем решить его по формуле. Раскрываем скобки и применяем формулу (3):.