Раскрашивание карт В 1850 году шотландский физик Фредерик Гутри обратил внимание на то, что задачи раскрашивания карт очень популярны среди студентов-математиков.

Презентация:



Advertisements
Похожие презентации
Проблема четырех красок В 1850 году шотландский физик Фредерик Гутри обратил внимание на то, что задачи раскрашивания карт очень популярны среди студентов-математиков.
Advertisements

Проблема четырех красок В 1850 году шотландский физик Фредерик Гутри обратил внимание на то, что задачи раскрашивания карт очень популярны среди студентов-математиков.
Проблема четырех красок В 1850 году шотландский физик Фредерик Гутри обратил внимание на то, что задачи раскрашивания карт очень популярны среди студентов-математиков.
Раздел геометрии, изучающий свойства фигур и тел, которые не изменяются при их непрерывных деформациях ( растяжениях, сжатиях), как если бы они были сделаны.
ПАРКЕТЫ Паркетом на плоскости называется такое заполнение плоскости многоугольниками, при котором любые два многоугольника либо имеют общую сторону, либо.
Начало теории графов было положено Леонардом Эйлером в его знаменитом рассуждении о Кенигсбергских мостах в 1736 году Леонард Эйлер родился 15 апреля.
Центральная симметрия Точки А и А' называются симметричными относительно точки О, если О является серединой отрезка АА'. Точка О считается симметричной.
Паркеты Паркетом называется такое заполнение плоскости многоугольниками, при котором любые два многоугольника либо имеют общую сторону, либо имеют общую.
Излагается история теоремы о четырех красках. Ее чрезвычайно длинное доказательство, притом использующее компьютер для проверки части утверждений, вызывает.
Многоугольники Вершины ломаной называются вершинами многоугольника. Стороны ломаной называются сторонами многоугольника. Углы, образованные соседними сторонами.
АКСИОМЫ СТЕРЕОМЕТРИИ Через любые две точки пространства проходит единственная прямая Через любые три точки пространства, не принадлежащие одной прямой,
Центральная симметрия Осевая симметрия Параллельный перенос ДВИЖЕНИЯДВИЖЕНИЯ.
Многоугольники Многоугольником называется … вершинами многоугольника.Вершины ломаной называются … сторонами многоугольника.Стороны ломаной называются …
{ Выполняя задания постарайтесь сделать чертёж к каждому } Упражнения по теме.
Тема урока: Геометрические тела и их изображение Учитель математики И.В. Дымова.
АКСИОМЫ СТЕРЕОМЕТРИИ Через любые две точки пространства проходит единственная прямая Через любые три точки пространства, не принадлежащие одной прямой,
«Творчество математика в такой же степени есть создание прекрасного, как творчество живописца или поэта, - совокупность идей, подобно совокупности красок.
ВЫПУКЛЫЕ МНОГОГРАННИКИ Многогранник называется выпуклым, если он является выпуклой фигурой, т. е. вместе с любыми двумя своими точками целиком содержит.
Четырехугольники Четырехугольником называется многоугольник с четырьмя углами. Четырехугольники бывают выпуклые и невыпуклые. Четырехугольник, у которого.
Ломаные Ломаной называется … фигура, образованная конечным набором отрезков, расположенных так, что … Сами отрезки называются…сторонами ломаной, а их концы.
Транксрипт:

Раскрашивание карт В 1850 году шотландский физик Фредерик Гутри обратил внимание на то, что задачи раскрашивания карт очень популярны среди студентов-математиков в Лондоне, а сформулировал проблему четырех красок его брат Фрэнсис Гутри, который, раскрасив карту графств Англии четырьмя красками, выдвинул гипотезу о том, что этого количества красок достаточно для раскраски любой карты. Он привлек к проблеме внимание своего преподавателя математики А. Де Моргана, а тот сообщил о ней своему другу В. Гамильтону и тем самым способствовал ее широкому распространению.

Многоугольная карта Многоугольной картой на плоскости будем называть разбиение многоугольника на более мелкие многоугольники, получающиеся добавлением новых вершин и сторон внутри данного многоугольника, причем любые два новых многоугольника или не имеют общих точек, или имеют общие вершины, или имеют общие стороны. Многоугольники называются странами, а их стороны – границами. Пример такой карты приведен на рисунке.

Криволинейная карта Заметим, что для задачи раскрашивания карты неважно, какими являются границы стран, прямыми или нет. Карту можно немного растягивать, сжимать, искривлять стороны, и при этом число красок, необходимых для ее правильного раскрашивания, не изменится. Мы будем рассматривать и такие карты. На рисунке показана многоугольная карта и карта, полученная из нее искривлением сторон.

Упражнение 1 Сколько красок требуется для правильной раскраски карты, изображенной на рисунке? Ответ: 2.

Упражнение 2 Сколько красок требуется для правильной раскраски карт, изображенных на рисунке? Ответ: а) 3; б) 4.

Упражнение 3 Сколько красок потребуется для правильной раскраски карты, образованной двумя концентрическими окружностями, имеющими n перегородок? Ответ: 3, если n четно и 4, если n нечетно.

Упражнение 4 Сколько красок требуется для правильной раскраски карты, образованной прямыми, изображенными на рисунке? Ответ: 2.

Упражнение 5 Сколько красок требуется для правильной раскраски карты, образованной окружностями, изображенными на рисунке? Ответ: 2.

Упражнение 6 Сколько красок потребуется для правильной раскраски карт, изображенных на рисунке? Ответ: а) 4; б) 4; в) 2.

Упражнение 7 Сколько красок потребуется для правильной раскраски карт, изображенных на рисунке? Ответ: а) 3; б) 2; в) 4; г) 3.